

MITSUBISHI ELECTRIC POWER PRODUCTS, INC. POWER SYSTEMS ENGINEERING DIVISION 530 KEYSTONE DRIVE WARRENDALE, PA 15086, U.S.A.

Phone: (724) 778-5111 Fax: (724) 778-5149 Home Page: www.meppi.com

Midcontinent Independent System Operator (MISO)

Affected System Impact Study SPP DISIS-2016-001

Draft Report

REP-0147 Revision #02

January 2018

Submitted By: Mitsubishi Electric Power Products, Inc. (MEPPI) Power Systems Engineering Division Warrendale, PA

Title:	Affected System Impact Study SPP DISIS-2016-001: Draft Report REP-0147				
Date:	January 2018				
Author:	Nicholas W. Tenza; Engineer II, Power Systems Engineering Division	<u>Nicholas W. Tenza</u>			
Approved:	Donald J. Shoup; General Manager, Power Systems Engineering Division	Donald J. Shoup			

EXECUTIVE SUMMARY

The Midcontinent Independent System Operator ("MISO") requested an Affected System Impact Study ("SIS") for the Southwest Power Pool ("SPP") Definitive Interconnection System Impact Study ("DISIS"). This report documents the impacts of thirteen (13) projects in the SPP generator queue on the MISO transmission system. At the time of this study, the DPP February 2016 West Phase II study was being completed by MISO which consists of higher queued generation. This report contains preliminary results which will be revised and finalized after the completion of the DPP Phase III for the February 2016 West group in MISO. The SPP study projects are listed in Table ES-1.

Queue #	Capacity	Service	Fuel Type	Area	Proposed Point of Interconnection
GEN-2015-089	200	ER	Wind	WAPA	Utica 230 kV Substation
GEN-2016-004	201.6	ER/NR	Wind	WAPA	Leland Olds 230 kV
GEN-2016-007	100.05	ER	Wind	WAPA	Valley City 115 kV
GEN-2016-017	250.7	ER	Wind	WAPA	Tap Fort Thompson - Leland Olds 345 kV
GEN-2016-021	300	ER	Wind	NPPD	Hoskins 345 kV
GEN-2016-023	150.53	ER	Wind	WAPA	Tap Laramie River - Sidney 345 kV
GEN-2016-029	150.53	ER	Wind	WAPA	Tap Laramie River - Sidney 345 kV
GEN-2016-043	230	ER	Wind	NPPD	Hoskins 345 kV
GEN-2016-050	250.7	ER	Wind	NPPD	Tap Axtell - Post Rock 345 kV
GEN-2016-052	3.3 (increase)	ER	Wind	WAPA	Hilken 230 kV
GEN-2016-053	3.3 (increase)	ER	Wind	WAPA	Hilken 230 kV
GEN-2016-054	3.4 (increase)	ER	Wind	WAPA	Wessington Springs 230 kV
GEN-2016-075	50	ER	Wind	WAPA	Grand Prairie 345 kV

Table ES-1Interconnection Projects Evaluated

Since the DPP February 2016 West Phase II study was not completed at the time of this study, the identified upgrades for higher queued generation were not implemented. Table ES-2 lists the thermal overloads identified in this study and notes if the constraint was identified in the DPP

February 2016 West Phase II study. Table ES-3 lists the voltage violations identified in this study and notes if the constraint was identified in the DPP February 2016 West Phase II study. Although the majority of the voltage violations identified in this study were not observed in the DPP February 2016 West Phase II study, the upgrades identified for thermal line loadings may improve the low voltages observed and therefore, reduce the required mitigation for voltage violations. Additional mitigation will be recommended pending the completion of the DPP February 2016 West Phase II study.

MISO Area Transmission Elements						
Monitored Facility	From Bus Owner	To Bus Owner	Rate (MVA)	Notes		
620327 HANKSON4 230 620329 WAHPETN4 230 1	OTP	OTP	368.2	Identified in DPP-FEB-2016-West Study Mitigation to follow		
635200 RAUN 3 345 645451 S3451 3 345 1	MEC	OPPD	956*	MEC end of line is rated for 1152 MVA. Thermal overload observed on OPPD end. Identified in DPP-FEB-2016-West Study Mitigation to follow		
635680 BONDRNT3 345 635730 MNTZUMA3 345 1	MEC	MEC	926	Identified in DPP-FEB-2016-West Study Mitigation to follow		

Table ES-2Thermal Overloads Identified

	Voltage Violations Identified						
	Voltage Violations Outside of Threshold						
Bus Number	Bus Name	Base kV	Bus Owner	Notes			
344923	5LATHROP	161	AMMO	Identified in DPP-FEB-2016-West Study Mitigation to follow			
629074	ARNOLD1G	22	ALTW (ITC)	Not identified in DPP-FEB-2016-West Study Transformer tap adjustment			
638032	GT SUB 8	69	MEC	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study			
638036	STRTR P8	69	MEC	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study			
635017	ATCHSN 3	345	MEC	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study			
635000	CBLUFFS3	345	MEC	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study			
635056	ADAMS 5	161	MEC	Not identified in DPP-FEB-2016-West Study			

Table ES-3Voltage Violations Identified

				Mitigation recommended for this study
629001	AMES 9	60	MEC	Not identified in DPP-FEB-2016-West Study
038001	AMES 0	09	MEC	Mitigation recommended for this study
638002	DAYTON8	69	MEC	Not identified in DPP-FEB-2016-West Study
050002	DITITOTIO	07	MLC	Mitigation recommended for this study
635645	MCKSBRG 5	161	MEC	Not identified in DPP-FEB-2016-West Study
			_	Mitigation recommended for this study
50322	J442 POI	230	OTP	Not identified in DPP-FEB-2016-West Study
				Not identified in DDD EEP 2016 West Study
615637	GRE-SILVRLK4	230	OTP	Mitigation recommended for this study
	GRF-			Not identified in DPP-FEB-2016-West Study
616000	MARSHLK7	115	OTP	Mitigation recommended for this study
				Not identified in DPP-FEB-2016-West Study
616001	GRE-WALDEN 7	115	ОТР	Mitigation recommended for this study
(1(00)	CDE IOUNICEZ	115	OTD	Not identified in DPP-FEB-2016-West Study
616002	GRE-JOHNJCI/	115	OIP	Mitigation recommended for this study
616003	CDE CDACEV 7	115	ОТР	Not identified in DPP-FEB-2016-West Study
010003	UKE-UKACEV /	115	OIF	Mitigation recommended for this study
616006	GRE-	115	ОТР	Not identified in DPP-FEB-2016-West Study
010000	HANCOCK7	115	011	Mitigation recommended for this study
618206	GRE-FERGUS 7	115	OTP	Not identified in DPP-FEB-2016-West Study
				Mitigation recommended for this study
620170	EFERGUS7	115	OTP	Not identified in DPP-FEB-2016-West Study
				Not identified in DDD EED 2016 West Study
620173	DAWS TP7	115	OTP	Not identified in DFF-FEB-2010-west Study Mitigation recommended for this study
				Not identified in DPP-FEB-2016-West Study
620174	DAWSON 7	115	OTP	Mitigation recommended for this study
				Not identified in DPP-FEB-2016-West Study
620205	BRUCE 7	115	OTP	Mitigation recommended for this study
(2020)	LOUGDDC7	115	OTD	Not identified in DPP-FEB-2016-West Study
020200	LOUSBRG/	115	OIP	Mitigation recommended for this study
620208	BRUCE TP	115	ОТР	Not identified in DPP-FEB-2016-West Study
020208	DRUCE II	115	011	Mitigation recommended for this study
620209	HETLAND7	115	ОТР	Not identified in DPP-FEB-2016-West Study
020202		110	011	Mitigation recommended for this study
620210	TORONTO7	115	OTP	Not identified in DPP-FEB-2016-West Study
				Mitigation recommended for this study
620211	CANBY 7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommanded for this study
				Not identified in DPP_FEB 2016 West Study
620212	BURR 7	115	OTP	Mitigation recommended for this study
				Not identified in DPP-FFR-2016-West Study
620213	MARIETT7	115	OTP	Mitigation recommended for this study
620214	BIGSTON7	115	ОТР	Not identified in DPP-FEB-2016-West Study
020211	21001010	110	011	1.50 Identified in DIT TED 2010 West Study

				Mitigation recommended for this study
620215	HIWY127	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620216	ORTONVL7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620218	MOROTP 7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620223	HOOT LK7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620224	DUMONT 7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620225	WHEATNS7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620227	FAIRMNT7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620228	TYLER 7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620229	WAHPETN7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620232	EDGETWN7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620233	EDGETAP7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620287	ORTQUAR7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620288	ODESSA 7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620289	CORRELL7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620294	TRAVWHE7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620295	TRAVPIP7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620296	TYLERRS7	115	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620314	BIGSTON4	230	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620322	BSSOUTH4	230	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620325	BROWNSV4	230	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620327	HANKSON4	230	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620329	WAHPETN4	230	OTP	Not identified in DPP-FEB-2016-West Study Mitigation recommended for this study
620363	FORMAN 4	230	OTP	Not identified in DPP-FEB-2016-West Study

				Mitigation recommended for this study
620417	BSSOUTH3	345	OTP	Not identified in DPP-FEB-2016-West Study
				Mitigation recommended for this study
652555	MORRIS 7	115	OTP	Not identified in DPP-FEB-2016-West Study
				Mitigation recommended for this study
658102	GP ANTCO7	115	ОТР	Not identified in DPP-FEB-2016-West Study
038102	UKANICO/	115	011	Mitigation recommended for this study
659104	ELDOWL V7	115	OTD	Not identified in DPP-FEB-2016-West Study
658104	ELBOWLK/	115	OIP	Mitigation recommended for this study
650110		115	115 OTP	Not identified in DPP-FEB-2016-West Study
658110	FERGSFL/	115		Mitigation recommended for this study
650114		115	OTD	Not identified in DPP-FEB-2016-West Study
658114	APPLEIN/	115	OIP	Mitigation recommended for this study
(50(00		220	OTD	Not identified in DPP-FEB-2016-West Study
659698	WAHPE12Y	230	OIP	Mitigation recommended for this study
650,600		220	OTD	Not identified in DPP-FEB-2016-West Study
659699	WAHPEITY	230	OTP	Mitigation recommended for this study
(57700	LANCDON7	115	OTD	Not identified in DPP-FEB-2016-West Study
657709	LANGDON /	115	OIP	Mitigation recommended for this study
(57740	CENTED 1 C	22	OTD	Not identified in DPP-FEB-2016-West Study
657749	CENTERIG	22	OTP	Mitigation recommended for this study

Table ES-4 lists the proposed mitigation and cost allocations for the upgrades identified in Table ES-2 and Table ES-3 that have been confirmed by the respective Transmission Owner.

Cost Allocations for Confirmed Upgrades							
Constraint	Mitigation Required	Cost Estimate	Cost Allocation				
Bondurant - Montezuma 345 kV line	Structure replacements assumed to achieve rating above 1023 MVA.	N/A	*Will be mitigated by higher queued generation				
Hankinson – Wahpeton 230 kV line	Line clearance mitigations and terminal equipment upgrades	N/A	*Will be mitigated by higher queued generation				

Table ES-4Cost Allocations for Confirmed Upgrades

Low Voltage at Lathrop	Install 161 kV bus with a breaker	N/A	*Possibly mitigated by higher queued generation
TOT KV DUS	1*25 MVAR cap bank at Lathrop 161 kV		
Low voltages at CBEC 345 kV facility	Install 150 Mvar capacitor bank at Overland Trail 345 kV	\$5,000,000	GEN-2015-089: \$268,408 GEN-2016-004: \$649,332 GEN-2016-007: \$415,664 GEN-2016-017: \$267,794 GEN-2016-021: \$806,303 GEN-2016-023: \$422,793 GEN-2016-029: \$422,793 GEN-2016-043: \$618,219 GEN-2016-050: \$987,718 GEN-2016-052: \$11,565 GEN-2016-053: \$11,565 GEN-2016-054: \$5,606 GEN-2016-075: \$114,169
Low voltages at Streeter Switch and GT Sub	Install 20 Mvar capacitor bank at Viking Road 69 kV	\$1,100,000	GEN-2015-089: \$155,868 GEN-2016-004: \$98,237 GEN-2016-007: \$44,783 GEN-2016-017: \$143,651 GEN-2016-021: \$231,421 GEN-2016-023: \$65,467 GEN-2016-029: \$65,467 GEN-2016-043: \$177,423 GEN-2016-050: \$86,350 GEN-2016-052: \$1,540 GEN-2016-053: \$1,540 GEN-2016-054: \$2,223 GEN-2016-075: \$26,031
Low voltages at various OTP buses	Install 70 Mvar capacitor bank at Big Stone 230 kV	\$1,800,000	GEN-2015-089: \$75,634 GEN-2016-004: \$537,305 GEN-2016-007: \$768,683 GEN-2016-017: \$209,840 GEN-2016-021: \$29,389 GEN-2016-023: \$42,505

			GEN-2016-029: \$42,505 GEN-2016-043: \$22,532 GEN-2016-050: \$21,129 GEN-2016-052: \$12,962 GEN-2016-053: \$12,962 GEN-2016-054: \$2,621 GEN-2016-075: \$21,934
Low voltages at various OTP buses	Install 50 Mvar capacitor bank at Hankinson 230 kV	\$1,700,000	GEN-2015-089: \$109,125 GEN-2016-004: \$258,422 GEN-2016-007: \$880,167 GEN-2016-017: \$188,566 GEN-2016-021: \$66,739 GEN-2016-023: \$40,448 GEN-2016-029: \$40,448 GEN-2016-043: \$51,166 GEN-2016-050: \$29,753 GEN-2016-052: \$4,968 GEN-2016-053: \$4,968 GEN-2016-054: \$2,961 GEN-2016-075: \$22,272
Low voltages at various OTP buses	Install 5 Mvar capacitor bank at Toronto 115 kV	\$550,000	GEN-2015-089: \$ 27,390 GEN-2016-004: \$208,561 GEN-2016-007: \$191,086 GEN-2016-017: \$42,685 GEN-2016-023: \$25,630 GEN-2016-029: \$25,630 GEN-2016-050: \$7,423 GEN-2016-052: \$3,872 GEN-2016-053: \$3,872 GEN-2016-054: \$1,359 GEN-2016-075: \$12,492

No transient stability constraints were identified for the addition of the thirteen SPP projects in the 2021 Summer Shoulder scenarios. The post-project case showed similar performance as the respective pre-project case and did not affect the transient stability of the system.

Table of Contents

Section 1:	Background and Objective	1			
Section 2:	Steady-State Analysis	2			
	2.1: Model Development	2			
	2.2: Study Assumptions	2			
	2.3: Study Criteria	3			
	2.3.1: MISO Criteria	3			
	2.3.2: TOS' Local Planning Criteria	3			
	2.4: Contingency Criteria	3			
	2.5: Monitored Elements	4			
	2.6: Steady-State Analysis Results	5			
	2.6.1: Summer Peak (2021) Steady-State Analysis	5			
	2.6.2: Summer Shoulder (2021) Steady-State Analysis	5			
	2.7: Steady-State Analysis Conclusions	11			
Section 3:	Transient Stability Analysis				
	3.1: Model Development	12			
	3.2: Study Criteria	12			
	3.2.1: MISO Criteria	13			
	3.3: List of Contingencies	13			
	3.4: Transient Stability Analysis Results	43			
	3.4.1: Summer Shoulder (2021) Transient Stability Analysis	43			
	3.5: Transient Stability Analysis Conclusions	43			
Section 4:	Conclusions	44			

List of Tables

Table ES-1:	Interconnection Projects Evaluated	. i
Table ES-2:	Thermal Overloads Identified	ii
Table ES-3:	Voltage Violations Identified	ii
Table 1-1:	Interconnection Projects Evaluated	.1
Table 2-1:	Monitored MISO Areas	.4
Table 2-2:	Summary of Thermal Constrains for 2021 Summer Shoulder	.5
Table 2-3:	Summary of Voltage Constrains for 2021 Summer Shoulder	.6

SECTION 1: BACKGROUND AND OBJECTIVE

The objective of this report is to provide MISO with the deliverables for the "Affected System Impact Study SPP DISIS-2016-001." MISO requested an Affected System Impact Study for thirteen (13) generation interconnections for 2021 Summer Shoulder conditions and 2021 Summer Peak conditions, which requires a steady-state analysis and stability analysis.

The Siemens Power Technologies International PSS/E power system simulation program Version 33.10.0 and PowerGEM's TARA 1701 was used for this study. MISO provided the steady-state and stability database cases for 2021 Summer Shoulder and 2021 Summer Peak conditions. This impact study required a steady-state analysis to determine if any SPP study projects contribute to thermally overloaded lines or bus voltages that exceed normal or emergency operating conditions. The stability analysis was performed to determine if any SPP study projects contribute to adverse impacts on the MISO transmission system including generator tripping, rotor angle oscillation instability, voltage recovery issues, and voltage instability. Table 1-1 is a list of SPP study projects that were examined for this study.

Queue #	Capacity	Service	Fuel Type	Area	Proposed Point of Interconnection
GEN-2015-089	200	ER	Wind	WAPA	Utica 230 kV Substation
GEN-2016-004	201.6	ER/NR	Wind	WAPA	Leland Olds 230 kV
GEN-2016-007	100.05	ER	Wind	WAPA	Valley City 115 kV
GEN-2016-017	250.7	ER	Wind	WAPA	Tap Fort Thompson - Leland Olds 345 kV
GEN-2016-021	300	ER	Wind	NPPD	Hoskins 345 kV
GEN-2016-023	150.53	ER	Wind	WAPA	Tap Laramie River - Sidney 345 kV
GEN-2016-029	150.53	ER	Wind	WAPA	Tap Laramie River - Sidney 345 kV
GEN-2016-043	230	ER	Wind	NPPD	Hoskins 345 kV
GEN-2016-050	250.7	ER	Wind	NPPD	Tap Axtell - Post Rock 345 kV
GEN-2016-052	3.3	ER	Wind	WAPA	Hilken 230 kV
GEN-2016-053	3.3	ER	Wind	WAPA	Hilken 230 kV
GEN-2016-054	3.4	ER	Wind	WAPA	Wessington Springs 230 kV
GEN-2016-075	50	ER	Wind	WAPA	Grand Prairie 345 kV

Table 1-1Interconnection Projects Evaluated

SECTION 2: STEADY-STATE ANALYSIS

The steady-state analysis was performed to evaluate the thermal flow and voltage impact of the SPP study generators on the MISO transmission system.

2.1 Model Development

The following DPP February 2016 West Phase II study case load profiles were used for the study (include MISO queue projects up to DPP-2016-FEB):

- 2021 Summer Shoulder
 - StudyCase-MISO17_2022_SH90__TA_Pass3-DPP 2016-FEB_West_170921.sav
 2021 Summer Peak
 - StudyCase-MISO17_2022_SUM__TA_Pass3-DPP 2016-FEB_West_170921.sav

The "pre-project" case was developed based on the above power flow cases by making the following changes:

- Remove the withdrawn Project J298, a 300 MW interconnection that connects to the Dysart 161 kV substation.
 - Note the withdrawal of Project J298 required a restudy for the MISO DPP-August-2015-West group which was not completed at the time of this study. Any changes to the results of that study may impact this study and may require a restudy of the Affected System Impact Study for SPP DISIS-2016-001.
- Re-dispatch generation in the MISO Classic region.

The SPP study cases were built by adding the SPP queue projects to the MISO "pre-project" cases. The details of each SPP interconnection request study projects are listed in Table 1-1. The SPP study projects and SPP higher queued projects were dispatched per MISO criteria to the entire SPP footprint, where generators were scaled in proportion to the available reserve.

2.2 Study Assumptions

This affected system impact study was conducted with all the participating generators and higher queued SPP generators. This study group includes higher queued SPP generators and requested study SPP generators in South Dakota (east, west, and south central), North Dakota (west and east), and Nebraska. In the summer shoulder scenario wind plants are dispatched at 100% nameplate rating in the study group and in the summer peak scenario wind plants are dispatched at 15.6% nameplate rating. Higher queued SPP projects were modeled as outlined in Appendix A of the report. The results obtained in this analysis may change if any of the data or assumptions made during the development of the study models is revised.

2.3 Study Criteria

All interconnection requirements are based on the applicable MISO Interconnection Planning Criteria and in accordance with the NERC Reliability Standards. Steady state violations of applicable planning criteria were attributed to the SPP group generation requests by the usage of MISO injection criteria, and applicable local planning criteria. The simulation software that was utilized for this analysis was Siemen's PTI PSS/E Version 33.10.0 and PowerGEM's TARA 1701.

2.3.1 MISO Criteria

A branch is considered as a thermal injection constraint if the branch is loaded above its applicable normal or emergency rating for the post-change case, and any of the following conditions are met:

- 1) The generator (NR/ER) has a larger than 20% DF on the overloaded facility under post contingent condition or 5% DF under system intact condition, or
- 2) The megawatt impact due to the generator is greater than or equal to 20% of the applicable rating (normal or emergency) of the overloaded facility, or
- 3) The Cumulative MW Impact from study generators is greater than or equal to 20% of the applicable (normal or Emergency) facility rating, where study generators whose Individual MW Impact is greater than 5% of the facility rating and its DF on the overloaded facility is greater than or equal to 5% will be responsible to mitigate the Cumulative MW Impact Constraint, or
- 4) The overloaded facility or the overload-causing contingency is at generator's outlet.

A bus is considered a voltage constraint if both of the following conditions are met. All voltage constraints must be resolved before a project can receive Interconnection Service.

- 1) The bus voltage is outside of applicable normal or emergency limits for the post-change case, and
- 2) The change in bus voltage is greater than 0.01 per unit.

All generation projects in the study group must mitigate thermal injection constraints in order to obtain unconditional Interconnection Service.

2.3.2 TOS' Local Planning Criteria

A constraint is identified as an injection constraint if it violates applicable Transmission Owner FERC filed Local Planning Criteria.

2.4 Contingency Criteria

A comprehensive list of contingencies was considered for steady-state analysis:

- NERC Category P0 with system intact (no contingencies)
- NERC category P1, P2, P4, P5, P7 contingencies
 - Single element outages, at buses with a nominal voltage of 69 kV and above in the following areas: CWLD (area 333), AMMO (area 356), AMIL (area 357), CWLP (area 360), SIPC (area 361), WEC (area 295), MIUP (area 296), MH (area 667), ALTE (area 694), WPS (area 696), MGE (area 697), UPPC (area 698), XCEL (area 600), MP (area 608), SMMPA (area 613), GRE (area 615), OTP (area 620), ITCM (area 627), MPW (area 633), MEC (area 635), MDU (area 661), DPC (area 680), CE(area 222), NPPD (area 640), OPPD (area 645), LES (area 650), WAPA (area 652), AECI (area 330), MIPU(area 540), KCPL (area 541), KACY (area 542), BEPC-SPP (area 659), and INDN (area 545).
 - Multiple-element outages initiated by a fault with normal clearing such as multiterminal lines, in the Dakotas, Illinois, Iowa, Manitoba, Minnesota, Missouri, and Wisconsin.
- NERC Category P3
 - Selected NERC Category P3 events provided by ad-hoc study group in the study region.

For all the contingencies and post-disturbance analyses, cases were solved with transformer tap adjustment enabled, area interchange adjustment disabled, phase shifter adjustment enabled and switched shunt adjustment enabled.

2.5 Monitored Elements

Table 2-1 is a list of elements that were monitored in the MISO area.

		1011110	
Area #	Voltage	Area ID	Area Name
295	69kV and above	WEC	Wisconsin Electric Power Company (ATC)
296	69kV and above	MIUP	Michigan Upper Peninsula (ATC)
333	69kV and above	CWLD	Columbia, MO Water and Light
356	69kV and above	AMMO	Ameren Missouri
357	69kV and above	AMIL	Ameren Illinois
360	69kV and above	CWLP	City Water Light & Power (Springfield)

Table 2-1 Monitored MISO Areas

361	69kV and above	SIPC	Southern Illinois Power Co.
600	69kV and above	XEL	Xcel Energy North
608	69kV and above	MP	Minnesota Power & Light
613	69kV and above	SMMPA	Southern Minnesota Municipal Power Association
615	69kV and above	GRE	Great River Energy
620	69kV and above	OTP	Otter Tail Power Company
627	69kV and above	ITCM	ITC Midwest
633	69kV and above	MPW	Muscatine Power & Water
635	69kV and above	MEC	MidAmerican Energy
661	69kV and above	MDU	Montana-Dakota Utilities Co.
680	69kV and above	DPC	Dairyland Power Cooperative
694	69kV and above	ALTE	Alliant Energy East (ATC)
696	69kV and above	WPS	Wisconsin Public Service Corporation (ATC)
697	69kV and above	MGE	Madison Gas and Electric Company (ATC)
698	69kV and above	UPPC	Upper Peninsula Power Company (ATC)

2.6 Steady-State Analysis Results

This section lists the results from the steady-state analysis.

2.6.1 Summer Peak (2021) Steady-State Analysis

No constraints were identified in the 2021 Summer Peak Scenario.

2.6.2 Summer Shoulder (2021) Steady-State Analysis

Thermal and voltage constraints were identified for the 2021 Summer Shoulder Scenario. Refer to Table 2-2 for a summary of the thermal constraints identified.

Summary of Therman Constraints for 2021 Summer Shoulder								
Constraint	Contflow (MVA)	Rating (MVA)	Loading (%)	Contingency	G089	G007	G021	G043
620327 HANKSON4 230 620329 WAHPETN4 230 1	378.47	368.2	102.79	System Intact	1.2%	7.3%	0.6%	0.6%
620327 HANKSON4 230 620329 WAHPETN4	378.47	368.2	102.79	System Intact	1.2%	26.7%	0.6%	0.6%

 Table 2-2

 Summary of Thermal Constraints for 2021 Summer Shoulder

230 1								
635200 RAUN 3 345 645451 S3451 3 345 1	1063.93	956	111.29	Р1	16.9%	13.0	22.8%	22.8%
635200 RAUN 3 345 645451 S3451 3 345 1 note 2	1010.87	956	105.74	P1	16.3%	12.5%	17.8%	17.8%
635680 BONDRNT3 345 635730 MNTZUMA3 345 1	1022.95	926	110.47	System Intact	5.4%	1.8%	6.9%	6.9%

The thermal overloads identified in Table 2-2 were also identified in the DPP February 2016 West study that was recently completed. It is expected that upgrades from that study will mitigate the thermal overloads identified here.

Bus Number	Bus Name	Base kV	Area Owner	Pre- Proejct V (p.u.)	Post- Proejct V (p.u.)	Voltage Degradation	Criteria
344923	5LATHROP	161	AMMO	0.96	0.92	3%	0.95 to 1.05 p.u.
629074	ARNOLD1G	22	ALTW	1.04	1.06	2%	0.95 to 1.05 p.u.
638032	GT SUB 8	69	MEC	1.00	0.97	3%	1.00 to 1.05 p.u.
638036	STRTR P8	69	MEC	1.00	0.97	3%	1.00 to 1.05 p.u.
635017	ATCHSN 3	345	MEC	1.02	0.97	6%	1.00 to 1.05 p.u.
635000	CBLUFFS3	345	MEC	1.01	0.97	3%	1.00 to 1.05 p.u.
635056	ADAMS 5	161	MEC	1.00	0.97	3%	1.00 to 1.05 p.u.
638001	AMES 8	69	MEC	1.005	0.984	2.1%	1.00 to 1.05 p.u.
638002	DAYTON8	69	MEC	1.003	0.982	2.1%	1.00 to 1.05 p.u.
50322	J442 POI	230	OTP	0.94	0.91	3%	0.92 to 1.10 p.u.

 Table 2-3

 Summary of Voltage Constraints for 2021 Summer Shoulder

615637	GRE- SILVRLK4	230	OTP	0.93	0.90	3%	0.92 to 1.10 p.u.
616000	GRE- MARSHLK7	115	OTP	0.94	0.90	4%	0.92 to 1.10 p.u.
616001	GRE- WALDEN 7	115	OTP	0.93	0.90	3%	0.92 to 1.10 p.u.
616002	GRE- JOHNJCT7	115	OTP	0.94	0.91	3%	0.92 to 1.10 p.u.
616003	GRE- GRACEV 7	115	OTP	0.94	0.90	3%	0.92 to 1.10 p.u.
616006	GRE- HANCOCK7	115	OTP	0.94	0.91	3%	0.92 to 1.10 p.u.
618206	GRE- FERGUS 7	115	OTP	0.94	0.91	3%	0.92 to 1.10 p.u.
620170	EFERGUS7	115	OTP	0.94	0.91	3%	0.92 to 1.10 p.u.
620173	DAWS TP7	115	OTP	0.93	0.90	4%	0.92 to 1.10 p.u.
620174	DAWSON 7	115	OTP	0.93	0.90	4%	0.92 to 1.10 p.u.
620205	BRUCE 7	115	OTP	0.91	0.87	4%	0.92 to 1.10 p.u.
620206	LOUSBRG7	115	OTP	0.93	0.90	4%	0.92 to 1.10 p.u.
620208	BRUCE TP	115	OTP	0.91	0.87	4%	0.92 to 1.10 p.u.

620209	HETLAND7	115	OTP	0.91	0.87	4%	0.92 to 1.10 p.u.
620210	TORONTO7	115	OTP	0.92	0.88	4%	0.92 to 1.10 p.u.
620211	CANBY 7	115	OTP	0.93	0.90	4%	0.92 to 1.10 p.u.
620212	BURR 7	115	ОТР	0.92	0.89	4%	0.92 to 1.10 p.u.
620213	MARIETT7	115	OTP	0.92	0.89	4%	0.92 to 1.10 p.u.
620214	BIGSTON7	115	OTP	0.93	0.90	3%	0.92 to 1.10 p.u.
620215	HIWY127	115	ОТР	0.93	0.90	3%	0.92 to 1.10 p.u.
620216	ORTONVL7	115	OTP	0.95	0.91	3%	0.92 to 1.10 p.u.
620218	MOROTP 7	115	OTP	0.93	0.90	3%	0.92 to 1.10 p.u.
620223	HOOT LK7	115	ОТР	0.94	0.91	3%	0.92 to 1.10 p.u.
620224	DUMONT 7	115	OTP	0.94	0.90	3%	0.92 to 1.10 p.u.
620225	WHEATNS7	115	OTP	0.94	0.90	4%	0.92 to 1.10 p.u.
620227	FAIRMNT7	115	OTP	0.93	0.90	3%	0.92 to 1.10 p.u.

620228	TYLER 7	115	OTP	0.93	0.90	3%	0.92 to 1.10 p.u.
620229	WAHPETN7	115	ОТР	0.93	0.91	3%	0.92 to 1.10 p.u.
620232	EDGETWN7	115	OTP	0.94	0.91	3%	0.92 to 1.10 p.u.
620233	EDGETAP7	115	OTP	0.94	0.91	3%	0.92 to 1.10 p.u.
620287	ORTQUAR7	115	ОТР	0.94	0.91	3%	0.92 to 1.10 p.u.
620288	ODESSA 7	115	OTP	0.94	0.91	3%	0.92 to 1.10 p.u.
620289	CORRELL7	115	ОТР	0.94	0.90	4%	0.92 to 1.10 p.u.
620294	TRAVWHE7	115	OTP	0.94	0.90	4%	0.92 to 1.10 p.u.
620295	TRAVPIP7	115	ОТР	0.94	0.90	4%	0.92 to 1.10 p.u.
620296	TYLERRS7	115	OTP	0.93	0.90	3%	0.92 to 1.10 p.u.
620314	BIGSTON4	230	ОТР	0.92	0.89	3%	0.92 to 1.10 p.u.
620322	BSSOUTH4	230	OTP	0.92	0.89	3%	0.92 to 1.10 p.u.
620325	BROWNSV4	230	OTP	0.90	0.87	3%	0.92 to 1.10 p.u.

620327	HANKSON4	230	OTP	0.91	0.88	3%	0.92 to 1.10 p.u.
620329	WAHPETN4	230	OTP	0.91	0.89	3%	0.92 to 1.10 p.u.
620363	FORMAN 4	230	OTP	0.93	0.91	2%	0.92 to 1.10 p.u.
620417	BSSOUTH3	345	OTP	0.92	0.90	2%	0.92 to 1.10 p.u.
652555	MORRIS 7	115	OTP	0.93	0.89	3%	0.92 to 1.10 p.u.
658102	GRANTCO7	115	OTP	0.92	0.89	3%	0.92 to 1.10 p.u.
658104	ELBOWLK7	115	OTP	0.93	0.90	3%	0.92 to 1.10 p.u.
658110	FERGSFL7	115	OTP	0.94	0.91	3%	0.92 to 1.10 p.u.
658114	APPLETN7	115	OTP	0.94	0.90	4%	0.92 to 1.10 p.u.
659698	WAHPET2Y	230	OTP	0.91	0.88	3%	0.92 to 1.10 p.u.
659699	WAHPET1Y	230	OTP	0.91	0.88	3%	0.92 to 1.10 p.u.
657709	LANGDON7	115	OTP	0.90	0.89	2%	0.92 to 1.10 p.u.
657749	CENTER1G	22	OTP	0.97	0.89	8%	0.973 to 1.015 p.u.

The Lathrop 161 kV bus voltage violation was identified in the DPP February 2016 West Phase II study. All other bus voltage violations were only identified for this study. The upgrades identified in the DPP February 2016 West study may impact the low voltages observed here. Mitigation for the low voltages will be identified pending the completion of the DPP February 2016 West Phase II study.

2.7 Steady-State Analysis Conclusions

The Affected System Study identified Steady State thermal violations associated with the interconnection of the thirteen SPP projects. The study identified injection constraints as well as voltage violations in the shoulder scenario for 2021 analysis. Network upgrades will be recommended pending the completion of the DPP February 2016 West Phase II study.

SECTION 3: TRANSIENT STABILITY ANALYSIS

The transient stability analysis was performed to evaluate the transient stability impact of the SPP study generators on the MISO transmission system for regional faults in the WAPA and NPPD area. The transient stability analysis was performed with PSS/E Version 33.10.0.

3.1 Model Development

The following MTEP17 DPP-2016-Feb-West Phase II study case stability files were used for the study:

2021 Summer Shoulder

 StudyCase-2022_SH90_DS_171020.sav

The "pre-project" case was developed based on the above power flow case by making the following changes:

- Remove the withdrawn Project J298, a 300 MW interconnection that connects to the Dysart 161 kV substation.
 - Note the withdrawal of Project J298 required a restudy for the MISO DPP-August-2015-West group which was not completed at the time of this study. Any changes to the results of that study may impact this study and may require a restudy of the Affected System Impact Study for SPP DISIS-2016-001.
- Re-dispatch generation in the MISO Classic region.

The SPP study cases were built by adding the SPP queue projects to the MISO "pre-project" cases. The details of each SPP interconnection request study projects are listed in Table 1-1. The SPP study projects and SPP higher queued projects were dispatched per MISO criteria to the entire SPP footprint, where generators were scaled in proportion to the available reserve.

3.2 Study Criteria

All interconnections must be compliant with MISO criteria and will be required to provide mitigation to obtain Interconnection Service for the following:

- System instability
- Transient voltage constraints
- Damping violation

3.2.1 MISO Criteria

The faults selected for this analysis were evaluated based on the following MISO criteria:

- All on-line generating units are stable.
- No unexpected generator tripping.
- Post-fault transient voltage limits: 1.2 p.u. maximum, 0.7 p.u. minimum.
- All machine rotor angle oscillations must be positively damped with a minimum damping ratio of 0.81633% for disturbances with a fault or 1.6766% for line trips without a fault.
- Per local TO's planning criteria, specific transient voltage limits are applied to specific buses, areas, or companies that have different requirements.

A bus is considered a transient voltage constraint if both of the following conditions are met (all transient voltage constraints must be resolved before a project can receive Interconnection Service):

- The bus transient voltage is outside of specified transient voltage limits during the transient period, and
- The bus voltage is at least 0.01 p.u. worse than the pre-project case voltage for the same contingency.

3.3 List of Contingencies

The contingencies listed in Table 3-1 were simulated using the 2021 Summer Shoulder stability package. Simulations were performed using both the pre-project case and study case. The contingencies were performed by simulating a one second state-state run followed by the disturbance and element lost as described in Table 3-1.

		List and Description of Stability Contingencies
	3 phase fault on the Hoskins (640226) to Antelope (640520) 345kV line circuit 1, near Hoskins.	
1	FL101	a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		3 phase fault on the Hoskins (640226) to Shell Creek (640342) 345kV line circuit 1, near Hoskins.
2	FL102	a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
3 FL'	FLT03	3 phase fault on the Hoskins (640226) to Raun (635200) 345kV line circuit 1, near Hoskins.
		a. Apply fault at the Hoskins 345kV bus.

 Table 3-1

 List and Description of Stability Contingencies

		b. Clear fault after 5 cycles by tripping the faulted line.
		3 phase fault on the Hoskins 345/230/13.8kV (640226/640227/643082) transformer,
4	FL T04	near Hoskins.
-	11104	a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted transformer.
		3 phase fault on the Hoskins 345/115/13.8kV (640226/640228/640231) transformer,
5	FLT05	a Apply fault at the Hoskins $345kV$ bus
		b Clear fault after 5 cycles by tripping the faulted transformer
		3 phase fault on the Raun (635200) to Sioux City (652564) 345kV line circuit 1, near
		Raun.
6	FLT06	a. Apply fault at the Raun 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Raun (635200) to J506_POI (65400) 345kV line circuit 1, near
7	FI T07	Raun.
/	11107	a. Apply fault at the Raun 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Raun (635200) to S3451 (645451) 345kV line circuit 1, near
8	FLT08	Auni. a Apply fault at the Raun 345kV bus
		b. Clear fault after 6 cycles by tripping the faulted line
		3 phase fault on the Raun (635200) to I412, POI (55201) 345kV line circuit 1 near
		Raun.
9	FLT09	a. Apply fault at the Raun 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Raun 345/161kV (635200/635201) transformer, near Raun.
10	FLT10	a. Apply fault at the Raun 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Shell Creek (640342) to Columbus (640125) 345kV line circuit 1,
11	FI T1 1	near Shell Creek.
11	FLIII	a. Apply fault at the Shell Creek 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		3 phase fault on the Shell Creek 345/230/13.8kV (640342/640343/643136)
12	10 EI T10	transformer, near Shell Creek.
12	11112	a. Apply fault at the Shell Creek 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		3 phase fault on the Antelope 345/115/13.8kV (640520/640521/640524) transformer,
13	FLT13	near Antelope.
		a. Apply fault at the Antelope 345KV bus.

ELECTRIC
Changes for the Better

		b. Clear fault after 5 cycles by tripping the faulted line.
14	FI T14	3 phase fault on the Hoskins 230/115/13.8kV (640227/640228/643083) transformer,
		near Hoskins.
	12111	a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Hoskins (640227) to Dixon County (560347) 230kV line circuit
15	FLT15	a Apply fault at the Hoskins 230kV bus
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Hoskins (640228) to Norfolk (640298) 115kV line circuit 1, near
		Hoskins.
16	FLT16	a. Apply fault at the Hoskins 115kV bus.
		b. Clear fault after 6.5 cycles by tripping the faulted line.
		3 phase fault on the Hoskins (640228) to Belden (640080) 115kV line circuit 1, near
17	FLT17	Hoskins.
17	1211/	a. Apply fault at the Hoskins 115kV bus.
		b. Clear fault after 6.5 cycles by tripping the faulted line.
		1 near Hoskins
18	FLT18	a. Apply fault at the Hoskins 115kV bus.
		b. Clear fault after 6.5 cycles by tripping the faulted line.
	FLT19	3 phase fault on the Hoskins (640228) to Stanton West (640363) 115kV line circuit 1,
10		near Hoskins.
19		a. Apply fault at the Hoskins 115kV bus.
		b. Clear fault after 6.5 cycles by tripping the faulted line.
		Hoskins 345 kV Stuck Breaker Scenario 1
	FLT20	a. Apply fault at the Hoskins 345kV bus.
20		b. Clear fault after 16 cycles and trip the following elements
		c. Hoskins (640226) – Shell Creek (640342) 345kV
		d. Hoskins (640226) – Raun (635200) 345kV
		Hoskins 345 kV Stuck Breaker Scenario 2
		a. Apply fault at the Hoskins 345kV bus.
21	FLT21	b. Clear fault after 16 cycles and trip the following elements
		c. Hoskins (640226) – Shell Creek (640342) 345kV
		d. Hoskins (640226) – Antelope (640520) 345kV
		Hoskins 345 kV Stuck Breaker Scenario 3
22	FLT22	a. Apply fault at the Hoskins 345kV bus.
_		b. Clear fault after 16 cycles and trip the following elements
		c. Hoskins 345/230/13.8kV (640226/640227/643082) transformer

		d. Hoskins 345/115/13.8kV (640226/640228/640231) transformer
	FLT23	Prior Outage of Hoskins 345 kV (640226) to Raun 345 kV (635200) CKT 1; 3 phase fault on Hoskins 345kV (640226) to Antelope 345kV (640520), near Hoskins.
23		a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
24	FLT24	Prior Outage of Hoskins 345 kV (640226) to Raun 345 kV (635200) CKT 1; 3 phase fault on Hoskins 345kV (640226) to Shell Creek 345kV (640342), near Hoskins.
		a. Apply fault at the Hoskins 345K v bus.
		D. Clear fault after 5 cycles by httpping the faulted line. Prior Outogo of Hosking 345 kV (640226) to Pour 345 kV (635200) CKT 1: 3
25	FLT25	phase fault on Hoskins 345/115/13.8kV (640226/640228/640298) transformer, near Hoskins.
	12120	a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
26		Prior Outage of Hoskins 345 kV (640226) to Antelope 345 kV (640520) CKT 1; 3 phase fault on Hoskins 345kV (640226) to Raun 345kV (635200), near Hoskins.
26	FL126	a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
27	FLT27	Prior Outage of Hoskins 345 kV (640226) to Antelope 345 kV (640520) CKT 1; 3 phase fault on Hoskins 345kV (640226) to Shell Creek 345kV (640342), near Hoskins.
27		a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
28	FLT28	Prior Outage of Hoskins 345 kV (640226) to Antelope 345 kV (640520) CKT 1; 3 phase fault on Hoskins 345/115/13.8kV (640226/640228/640298) transformer, near Hoskins.
		a. Apply fault at the Hoskins 345 k v bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
20	EL T20	Prior Outage of Hoskins 345/230/13.8 kV (640226/640227/643082) Transformer; 3 phase fault on Hoskins 345kV (640226) to Antelope 345kV (640520), near Hoskins.
2)	1112)	a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
30	FLT30	Prior Outage of Hoskins 345/230/13.8 kV (640226/640227/643082) Transformer; 3 phase fault on Hoskins 345kV (640226) to Shell Creek 345kV (640342), near Hoskins.
		a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
31	FLT31	Prior Outage of Hoskins 345/230/13.8 kV (640226/640227/643082) Transformer; 3 phase fault on Hoskins 345kV (640226) to Raun 345kV (635200), near Hoskins.

		a. Apply fault at the Hoskins 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
32		3 phase fault on the G16-023-Tap (560075) to Sidney2-LNX (659426) to Sidney (659133) 345kV line circuit 1, near G16-023-Tap.
	FL132	a. Apply fault at the G16-023-Tap 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
22	FLT33	3 phase fault on the G16-023-Tap (560075) to Laramie (659131) 345kV line circuit 1, near G16-023-Tap.
33		a. Apply fault at the G16-023-Tap 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
24	EL T24	3 phase fault on the Laramie (659131) to Stegall (659135) 345kV line circuit 1, near Laramie.
54	FL134	a. Apply fault at the Laramie 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
25		3 phase fault on the Sidney (659133) to Sidney1-LNX (659425) to Keystone (640252) 345kV line circuit 1, near Sidney.
55	FL155	a. Apply fault at the Sidney 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
36	FLT36	3 phase fault on the Sidney 345/230/13.8kV (659133/659210/659168) Transformer, near Sidney.
30		a. Apply fault at the Sidney 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
37	FLT37	3 phase fault on the Ogalala 230/115/13.8kV (640302/640304/643115) Transformer circuit 1, near Ogalala 230 kV.
57		a. Apply fault at the Ogalala 230 kV bus.
		b. Clear fault after 5 cycles and trip the faulted transformer.
20	FLT38	3 phase fault on the Ogalala (640302) to Gentleman (640184) 230 kV line circuit 1, near Ogalala.
38		a. Apply fault at the Ogalala 230kV bus.
		b. Clear fault after 5 cycles and trip the faulted line and remove fault.
	FLT39	3 phase fault on the Sidney (659134) to Sidney West (652584) 230kV line circuit 1, near Sidney.
39		a. Apply fault at the Sidney 230 kV bus.
		b. Clear fault after 5 cycles, trip the faulted line, and remove the fault.
		c. Block the DC tie at SIDNEY 4.
		Sidney 230 kV Stuck Breaker Scenario 1
40	FLT40	a. Apply single phase fault at the Sidney (659134) 230kV bus.
		b. Wait 16 cycles and remove fault.

		c. Trip Sidney (659134) to Sidney Xfmr (659210) 230kV line circuit 1.
		d. Trip Sidney (659134) to Ogalala (640302) 230kV line circuit 1.
		Sidney 230 kV Stuck Breaker Scenario
		a. Apply single phase fault at the Sidney (659134) 230 kV bus.
41	EI T/1	b. Wait 16 cycles and remove fault.
41	I'L141	c. Trip Sidney (659134) to Sidney Xfmr (659210) 230 kV line circuit 1.
		d. Trip Sidney (659134) 230 kV / (652573) 115 kV / (659803) 13.8 kV transformer
		circuit 1.
		Sidney 345 kV Stuck Breaker Scenario 1
		a. Apply single phase fault at the Sidney2-LNX (659426) 345kV bus.
42	FLT42	b. Wait 16 cycles and remove fault.
		c. Trip Sidney2-LNX (659426) to G16-023-Tap (560075) 345kV line circuit 1.
		d. Trip Sidney2-LNX3 (659426) to Sidney (659133) 345kV line circuit 1
		Stegall 345 kV Stuck Breaker Scenario 1
		a. Apply single phase fault at the Stegall (659135) 345kV bus.
43	FLT43	b. Wait 16 cycles and remove fault.
		c. Trip Stegall (659135) to Laramie (659131) 345kV line circuit 1.
		d. Trip Stegall (659135) to Sidney (659133) 345kV line circuit 1
		Keystone 345 kV Stuck Breaker 3310
4.4		a. Apply single phase fault at the Keystone (640252) 345kV bus on the Keystone to Sidney (659133) ckt1 345kV line.
44	FL144	b. Run 16 cycles, remove fault.
		c. Trip line from Keystone (640252) to Sidney (659133) 345kV.
		d. Trip line from Keystone (640252) to Gentleman (640183) 345kV.
		Keystone 345 kV Stuck Breaker 3304
15	FLT45	a. Apply single phase fault at the Keystone (640252) 345kV bus on the Keystone to Gentleman (640183) ckt1 345kV line.
45		b. Run 16 cycles, remove fault.
		c. Trip line from Keystone (640252) to Gentleman (640183) 345kV.
		d. Disconnect three winding transformer at bus 640252/640253/640254.
		Prior outage on the Sidney (659134) – Sidney Xfmr (659210) 230 kV line circuit 1
	FLT46	3 phase fault on the Sidney (659133) to Stegall (659135) 345kV line circuit 1, near Sydney.
46		a. Apply fault at the Sidney 345kV bus.
-10		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 16 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

47	FLT47	 Prior outage on the Sidney (659134) – Sidney Xfmr (659210) 230 kV line circuit 1 3 phase fault on the Sidney (659133) to Sidney2-LNX (659426) 345kV line circuit 1, near Sydney. a. Apply fault at the Sidney 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 16 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
48	FLT48	 3 phase fault on the G16-050-Tap (560082) to Axtell (640065) 345kV line circuit 1, near G16-050-Tap. a. Apply fault at the G16-050-Tap 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
49	FLT49	 3 phase fault on the G16-050-Tap (560082) to Post Rock (530583) 345kV line circuit 1, near G16-050-Tap. a. Apply fault at the G16-050-Tap 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
50	FLT50	 3 phase fault on the Axtell (640065) to Sweetwater (640374) 345kV line circuit 1, near Axtell. a. Apply fault at the Axtell 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
51	FLT51	 3 phase fault on the Axtell (640065) to Pauline (640312) 345kV line circuit 1, near Axtell. a. Apply fault at the Axtell 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
52	FLT52	 3 phase fault on the Axtell 345/115/13.8kV (640065/640066/640067) Transformer, near Axtell. a. Apply fault at the Axtell 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
53	FLT53	 3 phase fault on the Post Rock (530583) to Spearville (531469) 345kV line circuit 1, near Post Rock. a. Apply fault at the Post Rock 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
54	FLT54	 3 phase fault on the Post Rock 345/230/13.8kV (530583/530584/530673) Transformer, near Post Rock. a. Apply fault at the Post Rock 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
55	FLT55	 Axtell 345 kV Stuck Breaker Scenario 1 a. Apply fault at the Axtell 345kV bus. b. Clear fault after 16 cycles and trip the following elements c. Axtell (640065) – G16-050-Tap (560082) 345kV

		d. Axtell (640065) – Pauline (640312) 345kV
		Axtell 345 kV Stuck Breaker Scenario 2
56		a. Apply fault at the Axtell 345kV bus.
	FLT56	b. Clear fault after 16 cycles and trip the following elements
		c. Axtell (640065) – G16-050-Tap (560082) 345kV
		d. Axtell (640065) – Sweetwater (640374) 345kV
		Axtell 345 kV Stuck Breaker Scenario 3
		a. Apply fault at the Axtell 345kV bus.
57	FLT57	b. Clear fault after 16 cycles and trip the following elements
		c. Axtell (640065) – Pauline (640312) 345kV
		d. Axtell (640065) – Sweetwater (640374) 345kV
		Post Rock 345 kV Stuck Breaker Scenario 1
		a. Apply fault at the Post Rock 345kV bus.
58	FLT58	b. Clear fault after 16 cycles and trip the following elements
		c. Post Rock (530583) – G16-050-Tap (560082) 345kV
		d. Post Rock (530583) – Spearville (531469) 345kV
		Post Rock 345 kV Stuck Breaker Scenario 2
		a. Apply fault at the Post Rock 345kV bus.
59	FLT59	b. Clear fault after 16 cycles and trip the following elements
		c. Post Rock (530583) – G16-050-Tap (560082) 345kV
		d. Post Rock 345/230/13.8kV (530583/530584/530673) Transformer
		Post Rock 345 kV Stuck Breaker Scenario 3
		a. Apply fault at the Post Rock 345kV bus.
60	FLT60	b. Clear fault after 16 cycles and trip the following elements
		c. Post Rock (530583) – Spearville (531469) 345kV
		d. Post Rock 345/230/13.8kV (530583/530584/530673) Transformer
		Prior Outage of G16-050-Tap 345 kV (560082) to Axtell 345 kV (640065) CKT 1; 3 phase fault on Post Rock 345kV (530583) to Spearville (531469), near Post Rock.
61	FLT61	a. Apply fault at the Post Rock 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
62	FLT62	Prior Outage of G16-050-Tap 345 kV (560082) to Axtell 345 kV (640065) CKT 1; 3 phase fault on Post Rock 345/230/13.8kV (530583/530584/530673) Transformer, near Post Rock.
		a. Apply fault at the Post Rock 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
63	FLT63	Prior Outage of G16-050-Tap 345 kV (560082) to Post Rock 345 kV (530583) CKT 1; 3 phase fault on Axtell 345kV (640065) to Sweetwater 345kV (640374), near Axtell.

		a. Apply fault at the Axtell 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
64	FLT64	 Prior Outage of G16-050-Tap 345 kV (560082) to Post Rock 345 kV (530583) CKT 1; 3 phase fault on Axtell 345kV (640065) to Pauline 345kV (640312), near Axtell. a. Apply fault at the Axtell 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
65	FLT65	 Prior Outage of G16-050-Tap 345 kV (560082) to Post Rock 345 kV (530583) CKT 1; 3 phase fault on Axtell 345/115/13.8kV (640065/640066/640067) Transformer, near Axtell. a. Apply fault at the Axtell 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
66	FLT66	 3 phase fault on the Grand Prairie (652532) to GRPRAR1-LNX3 (652832) to Holt County (640510) 345kV line circuit 1, near Grand Prairie. a. Apply fault at the Grand Prairie 345kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
67	FLT67	 3 phase fault on the Grand Prairie (652532) to GRPRAR2-LNX3 (652833) to Ft Thompson (652506) 345kV line circuit 1, near Grand Prairie. a. Apply fault at the Grand Prairie 345kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
68	FLT68	 3 phase fault on the Holt County (640510) to Grand Island (653571) 345kV line circuit 1, near Holt County. a. Apply fault at the Holt County 345kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
69	FLT69	 3 phase fault on the Holt County (640510) to Thedford (640500) 345kV line circuit 1, near Holt County. a. Apply fault at the Holt County 345kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
70	FLT70	 3 phase fault on the Ft Thompson (652506) to FTTHOM1-LNX3 (652806) to G16-017-Tap (560074) 345kV line circuit 1, near Ft Thompson. a. Apply fault at the Ft Thompson 345kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
71	FLT71	 3 phase fault on the Ft Thompson 345/230/14.8kV (652506/652507/652273) transformer, near Ft Thompson. a. Apply fault at the Ft Thompson 345kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
72	FLT72	Grand Prairie 345 kV Stuck Breaker Scenario 1 a. Apply fault at the GRPRAR1-LNX3 345kV bus.

		b. Clear fault after 16 cycles and trip the following elements
		c. GRPRAR1-LNX3 (652832) – Grand Prairie (652532) 345kV
		d. GRPRAR1-LNX3 (652832) - Holt County (640510) 345kV
		Grand Prairie 345 kV Stuck Breaker Scenario 2
		a. Apply fault at the GRPRAR2-LNX3 345kV bus.
73	FLT73	b. Clear fault after 16 cycles and trip the following elements
		c. GRPRAR2-LNX3 (652833) – Grand Prairie (652532) 345kV
		d. GRPRAR2-LNX3 (652833) – FTTHOM2-LNX3 (652807) 345kV
74	FLT74	Prior Outage of Grand Prairie 345 kV (652532) to GRPRAR1-LNX3 345 kV (652832) CKT 1; 3 phase fault on the Ft Thompson (652506) to FTTHOM1-LNX3 (652806) 345kV line circuit 1, near Ft Thompson.
		a. Apply fault at the Ft Thompson 345kV bus.
		b. Clear fault after 6.5 cycles by tripping the faulted line.
75	FLT75	Prior Outage of Grand Prairie 345 kV (652532) to GRPRAR1-LNX3 345 kV (652832) CKT 1; 3 phase fault on the Ft Thompson 345/230/14.8kV (652506/652507/652273) transformer, near Ft Thompson.
		a. Apply fault at the Ft Thompson 345kV bus.
		b. Clear fault after 6.5 cycles by tripping the faulted line.
76	FLT76	Prior Outage of Grand Prairie 345 kV (652532) to GRPRAR2-LNX3 345 kV (652833) CKT 1; 3 phase fault on the Holt County (640510) to Grand Island (652871) 345kV line circuit 1, near Holt County.
		a. Apply fault at the Holt County 345kV bus.
		b. Clear fault after 6.5 cycles by tripping the faulted line.
77	FLT77	Prior Outage of Grand Prairie 345 kV (652532) to GRPRAR2-LNX3 345 kV (652833) CKT 1; 3 phase fault on the Holt County (640510) to Thedford (640500) 345kV line circuit 1, near Holt County.
		a. Apply fault at the Holt County 345kV bus.
		b. Clear fault after 6.5 cycles by tripping the faulted line.
70	EI T79	3 phase fault on the Leland Olds (659106) to Garrison (652441) 230kV line circuit 1, near Leland Olds.
/0	FL1/0	a. Apply fault at the Leland Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
70	EL T7 0	3 phase fault on the Leland Olds (659106) to Washburn (652456) 230kV line circuit 1, near Leland Olds.
/9	FL1/9	a. Apply fault at the Leland Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
80	FLT80	3 phase fault on the Leland Olds (659106) to Logan (659108) 230kV line circuit 1, near Leland Olds.

		a. Apply fault at the Leland Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
81		3 phase fault on the Leland Olds (659106) to Stanton (615901) 230kV line circuit 1, near Leland Olds.
	FLT81	a. Apply fault at the Leland Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
	FLT82	3 phase fault on the Leland Olds 345/230/13.8kV (659105/659106/659201) transformer circuit 1, near Leland Olds.
82		a. Apply fault at the Leland Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Garrison (652441) to Hilken (652466) 230kV line circuit 1, near Garrison.
83	FLT83	a. Apply fault at the Garrison 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Garrison (652441) to Jamestown (652444) 230kV line circuit 1, near Garrison.
84	FLT84	a. Apply fault at the Garrison 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Washburn (652456) to Bismark (652426) 230kV line circuit 1, near Washburn.
85	FLT85	a. Apply fault at the Washburn 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
	FLT86	3 phase fault on the Logan (659108) to Blaisdell (659143) 230kV line circuit 1, near Logan.
86		a. Apply fault at the Logan 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
	FLT87	3 phase fault on the Stanton (615901) to Coal Creek Tap (615900) 230kV line circuit 1, near Stanton.
87		a. Apply fault at the Stanton 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Leland Olds (659105) to Antelope (659101) 345kV line circuit 1, near Leland Olds.
88	FLT88	a. Apply fault at the Leland Olds 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		Leland Olds 230 kV Stuck Breaker Scenario 1
	FLT89	a. Apply fault at the Leland Olds 230kV bus.
89		b. Clear fault after 16 cycles and trip the following elements
		c. Leland Olds (659106) – Washburn (652456) 230kV
		d. Leland Olds (659106) – Garrison (652441) 230kV

		Leland Olds 230 kV Stuck Breaker Scenario 2
90		a. Apply fault at the Leland Olds 230kV bus.
	FLT90	b. Clear fault after 16 cycles and trip the following elements
		c. Leland Olds (659106) – Logan (659108) 230kV
		d. Leland Olds (659106) – Stanton (615901) 230kV
		Leland Olds 230 kV Stuck Breaker Scenario 3
		a. Apply fault at the Leland Olds 230kV bus.
91	FLT91	b. Clear fault after 16 cycles and trip the following elements
		c. Leland Olds 345/230/13.8kV (659105/659106/659201) transformer, circuit 1
		d. Leland Olds 345/230/13.8kV (659105/659106/659202) transformer, circuit 2
92	FLT92	Prior Outage of Leland Olds 230 kV (659106) to Washburn 230 kV (652456) CKT 1; 3 phase fault on Leland Olds 230kV (659106) to Logan 230kV (659108), near Leland Olds.
		a. Appry fault at the Lefand Olds 250k V ous.
		Prior Outage of Leland Olds 230 kV (659106) to Washburn 230 kV (652456)
93	FLT93	CKT 1; 3 phase fault on Leland Olds 230kV (659106) to Washburn 250 kV (652441), near Leland Olds.
		a. Apply fault at the Leland Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
94	FLT94	Prior Outage of Leland Olds 230 kV (659106) to Washburn 230 kV (652456) CKT 1; 3 phase fault on Leland Olds 345/230/13.8kV (659105/659106/659201) transformer, near Leland Olds.
		a. Apply fault at the Leiand Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
95	FLT95	3 phase fault on Leland Olds 230kV (659106) to Washburn 230kV (652456), near Leland Olds.
		a. Apply fault at the Leland Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
96	FLT96	Prior Outage of Leland Olds 230 kV (659106) to Logan 230 kV (659108) CKT 1; 3 phase fault on Leland Olds 230kV (659106) to Garrison 230kV (652441), near Leland Olds.
		a. Apply fault at the Leland Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
97	FLT97	Prior Outage of Leland Olds 230 kV (659106) to Logan 230 kV (659108) CKT 1; 3 phase fault on Leland Olds 345/230/13.8kV (659105/659106/659201) transformer, near Leland Olds.
		a. Apply fault at the Leland Olds 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.

98	FLT98	 3 phase fault on the GROTON3 (659160) TO GROTON-LNX3 (659422) to LELAND1-LNX3 (659422) to LELANDO3 (659105) 345kV line circuit 1, near GROTON3. a. Apply fault at the GROTON3 345kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
	FLT99	3 phase fault on the Leland Olds (659105) to LELAND2-LNX3 (659424) to G16- 017-TAP (560074) 345kV line circuit 1, near Leland Olds.
99		a. Apply fault at the Leland Olds 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
100		3 phase fault on the Groton (659160) to G09_001IST (652175) 345kV line circuit 1, near Groton.
100	FL1100	a. Apply fault at the Groton 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
101		3 phase fault on the Groton 345/115/13.8kV (659160/652568/659161) transformer, near Groton.
101	FLT101	a. Apply fault at the Groton 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
100	FLT102	3 phase fault on the G09_001IST (652175) to Watertown (652529) 345kV line circuit 1, near G09_001IST.
102		a. Apply fault at the G09_001IST 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
	FLT103	3 phase fault on the Hilken (652466) to Baldwin (659365) 230kV line circuit 1, near Hilken.
103		a. Apply fault at the Hilken 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
	FLT104	3 phase fault on the Hilken (652466) to Garrison (652441) 230kV line circuit 1, near Hilken.
104		a. Apply fault at the Hilken 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Hilken (652466) to Bismark (652426) 230kV line circuit 1, near Hilken.
105	FLT105	a. Apply fault at the Hilken 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
106		3 phase fault on the Bismark (652426) to Jamestown (652444) 230kV line circuit 1, near Bismark.
	FLT106	a. Apply fault at the Bismark 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Bismark (652426) to Weber (659128) 230kV line circuit 1, near
107	FLT107	Bismark.
		a. Apply fault at the Bismark 250k v bus.

		b. Clear fault after 6 cycles by tripping the faulted line.
108	FLT108	3 phase fault on the Bismark (652426) to Mound City (652499) 230kV line circuit 1,
		a Apply fault at the Bismark 230kV bus
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Bismark (652426) to Ward (652296) 230kV line circuit 1, near
109	FI T109	Bismark.
107	1.1102	a. Apply fault at the Bismark 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
110	EL T110	3 phase fault on the Bismark 230/115/12.4kV (652426/652427/652392) transformer circuit 1, near Bismark.
110	FLIIIO	a. Apply fault at the Bismark 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
111		3 phase fault on the Baldwin (659365) to Ecklund (659284) 230kV line circuit Z, near Baldwin.
111	FLTIII	a. Apply fault at the Baldwin 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		Hilken 230 kV Stuck Breaker Scenario 1
		a. Apply fault at the Hilken 230kV bus.
112	FLT112	b. Clear fault after 16 cycles and trip the following elements
		c. Hilken (652466) – Baldwin (659365) 230kV
		d. Hilken (652466) – Bismark (652426) 230kV
		Hilken 230 kV Stuck Breaker Scenario 2
		a. Apply fault at the Hilken 230kV bus.
113	FLT113	b. Clear fault after 16 cycles and trip the following elements
		c. Hilken (652466) – Baldwin (659365) 230kV
		d. Hilken (652466) – Garrison (652441) 230kV
	FLT114	Hilken 230 kV Stuck Breaker Scenario 3
		a. Apply fault at the Hilken 230kV bus.
114		b. Clear fault after 16 cycles and trip the following elements
		c. Hilken (652466) – Garrison (652441) 230kV
		d. Hilken (652466) – Bismark (652426) 230kV
		Garrison 230 kV Stuck Breaker Scenario 1
	FLT115	a. Apply fault at the Garrison 230kV bus.
115		b. Clear fault after 16 cycles and trip the following elements
		c. Garrison (652441) – Leland Olds (659106) 230kV
		d. Garrison (652441) – Jamestown (652444) 230kV

		Bismark 230 kV Stuck Breaker Scenario 1
116		a. Apply fault at the Bismark 230kV bus.
	FLT116	b. Clear fault after 16 cycles and trip the following elements
		c. Bismark (652426) – Weber (659128) 230kV
		d. Bismark (652426) – Jamestown (652444) 230kV
117	FI T117	Prior Outage of Hilken 230 kV (652466) to Baldwin 230 kV (659365) CKT 1; 3 phase fault on the Hilken (652466) to Garrison (652441) 230kV line circuit 1, near Hilken.
117	121117	a. Apply fault at the Hilken 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
118	FLT118	 Prior Outage of Hilken 230 kV (652466) to Baldwin 230 kV (659365) CKT 1; 3 phase fault on the Hilken (652466) to Bismark (652426) 230kV line circuit 1, near Hilken. a. Apply fault at the Hilken 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
119	FLT119	Prior Outage of Hilken 230 kV (652466) to Baldwin 230 kV (659365) CKT 1; 3 phase fault on the Garrison (652441) to Jamestown (652444) 230kV line circuit 1, near Garrison.
		a. Apply fault at the Garrison 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
120	FLT120	 Prior Outage of Hilken 230 kV (652466) to Garrison 230 kV (652441) CKT 1; 3 phase fault on the Hilken (652466) to Bismark (652426) 230kV line circuit 1, near Hilken. a. Apply fault at the Hilken 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
	FLT121	Prior Outage of Hilken 230 kV (652466) to Garrison 230 kV (652441) CKT 1; 3 phase fault on the Hilken (652466) to Baldwin (659365) 230kV line circuit 1, near Hilken
121		a. Apply fault at the Hilken 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
122	FLT122	 Prior Outage of Hilken 230 kV (652466) to Garrison 230 kV (652441) CKT 1; 3 phase fault on the Baldwin (659365) to Ecklund (659284) 230kV line circuit Z, near Baldwin. a. Apply fault at the Baldwin 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
		Prior Outage of Hilken 230 kV (652466) to Rismark 230 kV (652426) CKT 1. 2
123	FLT123	phase fault on the Hilken (652466) to Baldwin (659365) 230kV line circuit 1, near Hilken.
		a. Apply fault at the Hilken 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.

124	FLT124	 Prior Outage of Hilken 230 kV (652466) to Bismark 230 kV (652426) CKT 1; 3 phase fault on the Hilken (652466) to Garrison (652441) 230kV line circuit 1, near Hilken. a. Apply fault at the Hilken 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
125	FLT125	Prior Outage of Hilken 230 kV (652466) to Bismark 230 kV (652426) CKT 1; 3 phase fault on the Baldwin (659365) to Ecklund (659284) 230kV line circuit Z, near Baldwin. a. Apply fault at the Baldwin 230kV bus.
126	FLT126	 b. Clear fault after 6 cycles by tripping the faulted line. Prior Outage of Hilken 230 kV (652466) to Bismark 230 kV (652426) CKT 1; 3 phase fault on the Garrison (652441) to Jamestown (652444) 230kV line circuit 1, near Garrison. a. Apply fault at the Garrison 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
127	FLT127	 3 phase fault on the Heart River (659448) to Rhame (659266) 230kV line circuit 1, near Heart River. a. Apply fault at the Heart River 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
128	FLT128	 3 phase fault on the Heart River (659448) to Belfield (652425) 230kV line circuit 1, near Heart River. a. Apply fault at the Heart River 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
129	FLT129	 3 phase fault on the Belfield (652425) to Dickinson (659124) 230kV line circuit 1, near Belfield. a. Apply fault at the Belfield 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
130	FLT130	 3 phase fault on the Belfield (652425) to Medora (652413) 230kV line circuit 1, near Belfield. a. Apply fault at the Belfield 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
131	FLT131	 3 phase fault on the Belfield (652425) to South Heart River (659309) 230kV line circuit Z, near Belfield. a. Apply fault at the Belfield 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
132	FLT132	 3 phase fault on the Belfield 345/230/13.8kV (652424/652425/652221) transformer circuit 1, near Belfield. a. Apply fault at the Belfield 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
133	FLT133	3 phase fault on the Rhame (659266) to Bowman (659339) 230kV line circuit 1, near

		Rhame.
		a. Apply fault at the Rhame 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
134	FLT134	3 phase fault on the Rhame (659266) to Little Missouri (659265) 230kV line circuit 1, near Rhame.
		a. Apply fault at the Rhame 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Rhame 230/115kV (659266/659267) transformer circuit 1, near
135	FLT135	Rhame.
155	1 21155	a. Apply fault at the Rhame 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		Belfield 230 kV Stuck Breaker Scenario 1
		a. Apply fault at the Belfield 230kV bus.
136	FLT136	b. Clear fault after 16 cycles and trip the following elements
		c. Belfield (652425) – Heart River (659448) 230kV
		d. Belfield (652425) – Medora (652413) 230kV
		Belfield 230 kV Stuck Breaker Scenario 2
		a. Apply fault at the Belfield 230kV bus.
137	FLT137	b. Clear fault after 16 cycles and trip the following elements
		c. Belfield (652425) – Dickinson (659124) 230kV
		d. Belfield (652425) – Medora (652413) 230kV
		Belfield 230 kV Stuck Breaker Scenario 3
	FLT138	a. Apply fault at the Belfield 230kV bus.
138		b. Clear fault after 16 cycles and trip the following elements
		c. Belfield (652425) – South Heart River (659309) 230kV
		d. Belfield (652425) – Medora (652413) 230kV
		Belfield 230 kV Stuck Breaker Scenario 4
	FLT139	a. Apply fault at the Belfield 230kV bus.
139		b. Clear fault after 16 cycles and trip the following elements
		c. Belfield (652425) – Dickinson (659124) 230kV
		d. Belfield (652425) – South Heart River (659309) 230kV
		Belfield 230 kV Stuck Breaker Scenario 5
		a. Apply fault at the Belfield 230kV bus.
1.40	FLT140	b. Clear fault after 16 cycles and trip the following elements
140		c. Belfield 345/230/13.8kV (652424/652425/652221) transformer, circuit 1
		d. Belfield 345/230/13.8kV (652424/652425/652220) transformer, circuit 1
141	FLT141	Rhame 230 kV Stuck Breaker Scenario 1

		a. Apply fault at the Rhame 230kV bus.
		b. Clear fault after 16 cycles and trip the following elements
		c. Rhame (659266) – Heart River (659448) 230kV
		d. Rhame (659266) – Little Missouri (659265) 230kV
		Rhame 230 kV Stuck Breaker Scenario 2
		a. Apply fault at the Rhame 230kV bus.
142	FLT142	b. Clear fault after 16 cycles and trip the following elements
		c. Rhame (659266) – Bowman (659339) 230kV
		d. Rhame (659266) – Little Missouri (659265) 230kV
		Rhame 230 kV Stuck Breaker Scenario 3
		a. Apply fault at the Rhame 230kV bus.
143	FLT143	b. Clear fault after 16 cycles and trip the following elements
		c. Rhame 230/115kV (659266/659267) transformer
		d. Rhame (659266) – Little Missouri (659265) 230kV
		Rhame 230 kV Stuck Breaker Scenario 4
		a. Apply fault at the Rhame 230kV bus.
144	FLT144	b. Clear fault after 16 cycles and trip the following elements
		c. Rhame 230/115kV (659266/659267) transformer
		d. Rhame (659266) – Bowman (659339) 230kV
	FLT145	Prior Outage of Heart River 230 kV (659448) to Rhame 230 kV (659266) CKT 1; 3 phase fault on the Belfield (652425) to Dickinson (659124) 230kV line circuit 1,
145		a Apply fault at the Belfield 230kV hus
		a. Apply fault at the Defined 250KV bus.
		D. Clear fault after 0 cycles by happing the faulted line. Prior Outage of Heart River 230 kV (659448) to Rhame 230 kV (659266) CKT 1:
146	FLT146	3 phase fault on the Belfield (652425) to Medora (652413) 230kV line circuit 1, near Belfield.
110		a. Apply fault at the Belfield 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
147	FLT147	Prior Outage of Heart River 230 kV (659448) to Rhame 230 kV (659266) CKT 1; 3 phase fault on the Belfield (652425) to South Heart River (659309) 230kV line circuit Z, near Belfield.
		a. Apply fault at the Belfield 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
148	FLT148	Prior Outage of Heart River 230 kV (659448) to Rhame 230 kV (659266) CKT 1; 3 phase fault on the Belfield 345/230/13.8kV (652424/652425/652221) transformer circuit 1, near Belfield.
		a. Apply fault at the Belfield 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.

149	FLT149	 Prior Outage of Heart River 230 kV (659448) to Belfield 230 kV (652425) CKT 1; 3 phase fault on the Rhame (659266) to Bowman (659339) 230kV line circuit 1, near Rhame. a. Apply fault at the Rhame 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
150	FLT150	 Prior Outage of Heart River 230 kV (659448) to Belfield 230 kV (652425) CKT 1; 3 phase fault on the Rhame (659266) to Little Missouri (6529265) 230kV line circuit 1, near Rhame. a. Apply fault at the Rhame 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
151	FLT151	 Prior Outage of Heart River 230 kV (659448) to Belfield 230 kV (652425) CKT 1; 3 phase fault on the Rhame 230/115kV (659266/659267) transformer circuit 1, near Rhame. a. Apply fault at the Rhame 230kV bus. b. Clear fault after 6 cycles by tripping the faulted line.
152	FLT152	 3 phase fault on G16-017-TAP (560074) to Fort Thompson (652806) 345 kV Line, CKT 1, near G16-017-TAP Bus a. Apply fault at the G16-017-TAP (560074) 345 kV Bus b. Clear fault after 6 cycles and trip the faulted line and disconnect Fort-Thompson- LNX3 (652806) bus
153	FLT153	 3 phase fault on G16-017-TAP (560074) to Leland Olds (659424) 345 kV Line, CKT 1, near G16-017-TAP Bus a. Apply fault at the G16-017-TAP (560074) 345 kV Bus b. Clear fault after 6 cycles and trip the faulted line and disconnect Leland-Olds-LNX3 (659424) bus
154	FLT154	Prior Outage of G16-017-TAP (560074) to Leland Olds (659105) 345 kV Line;3 phase fault on Fort Thompson (652506) to Grand Prairie (652532) 345 kVLine, near Fort Thompsona. Apply fault at the Fort Thompson (652506) 345 kV Busb. Clear fault after 6 cycles and trip the faulted line and disconnect Fort-Thompson-LNX3 (652807) and GrandPrairie-LNX3 (652833) bus
155	FLT155	Prior Outage of G16-017-TAP (560074) to Leland Olds (659105) 345 kV Line;3 phase fault on Fort Thompson 345 kV (652506) to Fort Thompson 230 kV(652507) to Fort Thompson 13.8 kV (652274) XFMR, CKT 1, near FortThompson 345 kVa. Apply fault at the Fort Thompson (652506) 345 kV Busb. Clear fault after 6 cycles and trip the faulted transformer
156	FLT156	Prior Outage of G16-017-TAP (560074) to Fort Thompson (652506) 345 kV Line;

		3 phase fault on Leland Olds 345 kV (659105) to Antelop Valley 345 kV (659101) CKT 1, near Leland Olds
		a. Apply fault at the Leland Olds (659105) 345 kV Bus
		b. Clear fault after 6 cycles and trip the faulted line
		Prior Outage of G16-017-TAP (560074) to Fort Thompson (652506) 345 kV Line;
157	FLT157	3 phase fault on Leland Olds 345 kV (659105) to Leland Olds 230 kV (659106) to leland Olds 13.8 kV (659201) XFMR, CKT 1, near Leland Olds 345 kV
		a. Apply fault at the Leland Olds (659105) 345 kV Bus
		b. Clear fault after 6 cycles and trip the faulted transformer
150		3 phase fault on the Utica 230kV (652526) to Ft. Randall 230kV (652509) near Utica 230kV bus
158	FLT158	a. Apply fault at the Utica 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
150		3 phase fault on the Utica 230kV (652526) to Rasmussen 230 kV (652536) near Utica bus
159	FLT159	a. Apply fault at the Utica 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
160	FLT160	3 phase fault on the Utica 230kV (652526) to Vfodnes 230 kV (652398) near Utica bus
		a. Apply fault at the Ofica 250KV ous.
		3 phase fault on the Rasmussen 230 kV (652536) to Sioux City 230 kV (652565) near
	FLT161	Rasmussen bus
161		a. Apply fault at the Rasmussen 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
	FLT162	3 phase fault on the FT Randall 230kV (652509) to FT. Thompson 230kV (652507) near Ft Randall bus
162		a. Apply fault at the FT Randall 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
1.60		3 phase fault on the Vfodnes 230kV (652398) to Sioux Falls 230kV (652523) near Vfodnes bus
163	FLT163	a. Apply fault at the Vfodnes 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
	FLT164	3 phase fault on the Sioux Falls 230kV (652523) to Hanlon 230kV (652513) near Sioux falls bus
164		a. Apply fault at the Sioux Falls 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
165	FLT165	3 phase fault on the Sioux Falls 230kV (652523) to Letcher 230kV (652606) near Letcher bus

		a. Apply fault at the Letcher 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
1.5.5		3 phase fault on the FT Randall 230kV (652509) to Meadow Grove 230kV (640540) near FT Randall bus
166	FLT166	a. Apply fault at the FT Randall 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Hanlon 230kV (652513) to Storla 230kV (659122) near Storla Bus
167	FLT167	a. Apply fault at the Storla 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Storla 230kV (659122) to Wessington 230kV (652607) near Wessington bus
168	FLT168	a. Apply fault at Wessington 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
1.50		3 phase fault on the Wessington 230kV (652607) to FT. Thompson 230kV (652507) near Wessington Bus
169	FL1169	a. Apply fault at the Wessington 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the FT. Thompson 230kV (652507) to Letcher 230kV (652606) near Letcher Bus
170	FLT170	a. Apply fault at the Letcher 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
171		3 phase fault on the Ft Randall 230kV (652509) to Love Platte 230kV (652516) near Love Platte bus
171	FLT171	a. Apply fault at the Love Platte 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
170		3 phase fault on the FT. Thompson 230kV (652507) to Love Platte 230kV (652516) near Love Platte bus
172	FL11/2	a. Apply fault at the Love Platte 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the FT. Randall 230kV (652509) to Sioux City 230kV (652565) near Sioux City Bus
173	FLT173	a. Apply fault at the Sioux City Bus 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Sioux City 230kV (652565) to Eagle 230kV (659900) near Eagle Bus
174	FLT174	a. Apply fault at the Eagle Bus 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
175	FLT175	3 phase fault on the Pohoja 230kV (652578) to Sioux Falls 230kV (652523) near

		Pohoja Bus
		a. Apply fault at the Pohoja 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
176		3 phase fault on the Sioux City 230kV (652565) to Twin Church 230kV (640386) near Sioux City Bus
	FLT176	a. Apply fault at the Sioux City 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Sioux City 230kV (652565) to Denison 230kV (652567) near Sioux City
177	FLT177	a. Apply fault at the Sioux City 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the FT. Thompson 230kV (652507) to Huron 230kV (652514) near FT. Thompson Bus
178	FLTT/8	a. Apply fault at the FT. Thompson 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
150		3 phase fault on the FT. Thompson 230kV (652507) to OAHE 230kV (652519) circuit 1 near FT. Thompson Bus
179	FLTT79	a. Apply fault at the FT. Thompson 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
100	FLT180	3 phase fault on the Meadow Grove 230kV (640540) to Columbus 230kV (640133) near Meadow Grove Bus
180		a. Apply fault at the Meadow Grove 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
101	FLT181	3 phase fault on the Utica 230kV (652526) to Utica 115kV (652626) to Utica 13.2kV (652627) XFMR CKT 1, near Utica 230kV.
181		a. Apply fault at the Utica 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted transformer.
100	FLT182	3 phase fault on the Sioux City 230kV (652565) to Sioux City 345kV (652564) XFMR CKT 1, near Sioux City 230kV bus.
182		a. Apply fault at the Sioux City 230kV bus.
		b. Clear fault after 6 cycles by tripping the faulted transformer.
	FLT183	3 phase fault on the Split Rock 345kV (601006) to White 345kV (652537) line near Split Rock Bus
183		a. Apply fault at the Split Rock 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
184	FLT184	3 phase fault on the Split Rock 345kV (601006) to Nobles 345kV (601034) line near Split Rock Bus
		a. Apply fault at the Split Kock 345kV bus.

		b. Clear fault after 6 cycles by tripping the faulted line.
185	FLT185	3 phase fault on the Split Rock 345kV (601006) to Sioux City 345kV (652864) line near Split Rock Bus
		a. Apply fault at the Split Rock 345kV bus.
		b. Clear fault after 6 cycles by tripping the faulted line.
		3 phase fault on the Utica 115kV (652626) to Napa 115kV (660026) line near Napa
186	FLT186	Bus
		a. Apply fault at the Napa 115KV bus.
		b. Clear fault after / cycles by tripping the faulted line.
		KeyStone Bus
187	FLT187	a. Apply fault at the KeyStone 115kV bus.
		b. Clear fault after 7 cycles by tripping the faulted line.
		3 phase fault on the WH Swan 115kV (652463) to Ft. Randall (652510) line near WH Swan Bus
188	FLT188	a. Apply fault at the WH Swan 115kV bus.
		b. Clear fault after 7 cycles by tripping the faulted line.
		Prior Outage of Ft. Thompson to Huron 230kV circuit 1 . 3 phase fault on the 345/230/13.8kV FT. Thompson Transformer.
189	FLT189	a. Prior outage Ft. Thompson (652507) 230kV to Huron (652514) 230kV (solve network for steady state solution) circuit 1.
		b. 3 phase fault on the 345/230/13.8kV Ft. Thompson (652507) transformer #3 (652506) 13.8kV (652274) near 230kV Ft. Thompson bus.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
	FLT190	Prior Outage of Utica to Vfodnes 230kV . 3 phase fault on the Utica - Ft. Randall 230kV line.
190		a. Prior outage Utica (652526) to Vfodnes (652398) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Utica (652526) to Ft. Randall (652509) 230kV, near Utica 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
	FLT191	Prior Outage of Utica to Rasmussen 230kV . 3 phase fault on the Utica - Vfodnes 230kV line.
191		a. Prior outage Utica (652526) to Rasmussen (652536) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Utica (652526) to Vfodnes (652398) 230kV line, near Utica 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
192	FLT192	Prior Outage of Utica to Rasmussen 230kV . 3 phase fault on the Utica - Ft. Randall 230kV line.

		a. Prior outage Utica (652526) to Rasmussen (652536) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Utica (652526) to Ft. Randall 230kV (652509) 230kV line, near Utica 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
		Prior Outage of Utica to Ft. Randall 230kV . 3 phase fault on the Utica - Vfodnes 230kV line.
193	FLT193	a. Prior outage Utica (652526) to Ft. Randall 230kV (652509) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Utica (652526) to Vfodnes (652398) 230kV line, near Utica 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
		Prior Outage of Utica to Ft. Randall 230kV . 3 phase fault on the Utica - Rasmussen 230kV line.
194	FLT194	a. Prior outage Utica (652526) to Ft. Randall (652509) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Utica (652526) to Rasmussen (652536) 230kV line, near Utica 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
	FLT195	Prior Outage of Wessington to Ft. Thompson 230kV . 3 phase fault on the Sioux Falls - Letcher 230kV line.
195		a. Prior outage Wessington (652607) to Ft. Thompson (652507) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Sioux Falls (652523) to Letcher (652606) 230kV, near Sioux Falls 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
	FLT196	Prior Outage of Wessington to Ft. Thompson 230kV . 3 phase fault on the Sioux Falls - Pohoja 230kV line.
196		a. Prior outage Wessington (652607) to Ft. Thompson (652507) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Sioux Falls (652523) to Pohoja (652578) 230kV line, near Sioux Falls 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
	FLT197	Prior Outage of Wessington to Storla 230kV . 3 phase fault on the Ft. Thompson - Huron 230kV line.
197		a. Prior outage Wessington (652607) to Storla 230kV (659122) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Ft. Thompson (652607) to Huron (652514) 230kV line, near Ft. Thompson 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).

		Prior Outage of Wessington to Storla 230kV . 3 phase fault on the Ft. Thompson - FT Randall 230kV line.
198	FLT198	a. Prior outage Wessington (652607) to Storla 230kV (659122) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Ft. Thompson (652507) to FT Randall 230kV (652509) 230kV line, near Ft. Thompson 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
		Prior Outage of Wessington to Storla 230kV . 3 phase fault on the Ft. Thompson - Letcher 230kV line.
199	FLT199	a. Prior outage Wessington (652607) to Storla 230kV (659122) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Ft. Thompson (652507) to Letcher 230kV (652606) 230kV line, near Ft. Thompson 230kV.
	FLT200	c. Leave fault on for 6 cycles, then trip the faulted line in (b).
		Prior Outage of Wessington to Storla 230kV . 3 phase fault on the Ft. Thompson - Love Platte 230kV line.
200		a. Prior outage Wessington (652607) to Storla 230kV (659122) 230kV line (solve network for steady state solution).
		b. 3 phase fault on the Ft. Thompson (652507) to Love Platte (652516) 230kV line, near Ft. Thompson 230kV.
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).
		Utica 230kV Stuck Breaker
201	FLT201	a. Apply single phase fault at the Utica (652526) 230kV line to Ft. Randall (652509) 230kV line near Utica (652526) bus.
		b. Wait 16 cycles, and then trip Utica (652526) to FT. Randall (652509) 230kV.
		c. Trip Utica (652526) to VFodnes (652398) 230kV line and remove the fault.
		Utica 230kV Stuck Breaker
202		a. Apply single phase fault at the Utica (652526) 230kV line to Rasmussen (652536) 230kV line near Utica (652526) bus.
202	FL1202	b. Wait 16 cycles, and then trip Utica (652526) to Rasmussen (652536) Line.
		c. Trip Utica (652526) 230kV to Utica (652626) 115kV to Utica (652627) 13.2kV transformer and remove the fault.
		Utica 115kV Stuck Breaker
203	FLT203	a. Apply single phase fault at the Utica (652626) 115kV bus on the Utica – Napa Jn (660026) 115kV line.
		b. Wait 16 cycles, and then trip Utica (652626) to Napa Jn (660026) Line.
		c. Trip Utica (652626) 115kV to MENNO (660007) 115kV line and remove the fault.
204	FLT204	Wessington 230kV Stuck Breaker

		a. Apply single phase fault at the Wessington (652607) 230kV line to Ft. Thompson (652507) 230kV line near Wessington bus.			
		b. Wait 16 cycles, and then trip Wessington (652607) to FT. Thompson (652507) 230kV line.			
		Wessington 230kV Stuck Breaker			
205	FLT205	a. Apply single phase fault on the Wessington (652607) – Storla (659122) 230kV line near Wessington 230kV bus.			
		b. Wait 16 cycles, and then trip Storla (659122) to Wessington (652607) line.			
		Prior Outage of Utica to Vfodnes 230kV . 3 phase fault on the Utica - Rasmussen 230kV line.			
206	FLT206	a. Prior outage Utica (652526) 230kV to Vfodnes (652398) 230kV line (solve network for steady state solution).			
		b. 3 phase fault on the Utica (652526) 230kV to Rasmussen (652536) 230kV, near Utica 230kV.			
		c. Leave fault on for 6 cycles, then trip the faulted line in (b).			
		3 phase fault on the VALLEY CITY 115KV (652454) to ENDERLIN 115KV (652638) CKT 1, near VALLEY CITY.			
207	FLT207	a. Apply fault at the VALLEY CITY 115KV bus.			
		a. b. Clear fault after 7 cycles by tripping the faulted line (CKT 1).			
200	FLT208	3 phase fault on the VALLEY CITY 115KV (652454) to JAMESTOWN 115KV (652445) CKT 1, near VALLEY CITY.			
208		a. Apply fault at the VALLEY CITY 115KV bus.			
		a. b. Clear fault after 7 cycles by tripping the faulted line (CKT 1).			
200	EL T200	3 phase fault on the ENDERLIN 115KV (652638) to ELLIOTT 115KV (652462) CKT 1, near ENDERLIN.			
209	FLT209	a. Apply fault at the ENDERLIN 115KV bus.			
		a. b. Clear fault after 7 cycles by tripping the faulted line (CKT 1).			
210	FLT210	3 phase fault on the ELLIOTT 115KV (652462) to FORMAN 115KV (652438) CKT 1, near ELLIOTT.			
210		a. Apply fault at the ELLIOTT 115KV bus.			
		a. b. Clear fault after 7 cycles by tripping the faulted line (CKT 1).			
211	FLT211	1) 3 phase fault on the JAMESTOWN 115KV (652445) to JAMESTOWN 230kV (652444) to JAMESTOWN 13.2kV (652208) XMFR CKT 1, near JAMESTOWN 115kV.			
		2) a. Apply fault at the JAMESTOWN 115kV bus.			
		a. b. Clear fault after 7 cycles by tripping the faulted transformer.			
212	FLT212	3 phase fault on the JAMESTOWN 115KV (652445) to CARINGTON 115KV (652428) CKT 1, near JAMESTOWN.			
		a. Apply fault at the JAMESTOWN 115KV bus.			

	a. b. Clear fault after 7 cycles by tripping the faulted line (CKT 1).				
		3 phase fault on the JAMESTOWN 115KV (652445) to EDGELEY 115KV (652432) CKT 1, near JAMESTOWN.			
213	FLT213	a. Apply fault at the JAMESTOWN 115KV bus.			
		a. b. Clear fault after 7 cycles by tripping the faulted line (CKT 1).			
		3 phase fault on the EDGELEY 115KV (652432) to ORDWAY115KV (652534) CKT 1, near EDGELEY.			
214	FLT214	a. Apply fault at the EDGELEY 115KV bus.			
		b. Clear fault after 7 cycles by tripping the faulted line (CKT 1).			
		3 phase fault on the CARINGTON 115KV (652428) to BARLOW 115KV (655610) CKT 1, near CARINGTON.			
215	FLT215	a. Apply fault at the CARINGTON 115KV bus.			
		b. Clear fault after 7 cycles by tripping the faulted line (CKT 1).			
		3 phase fault on the JAMESTOWN 230KV (652444) to FARGO 230KV (652435) CKT 1, near JAMESTOWN.			
216	FLT216	a. Apply fault at the JAMESTOWN 230KV bus.			
		b. Clear fault after 6 cycles by tripping the faulted line (CKT 1).			
		3 phase fault on the JAMESTOWN 345KV (620369) to CENTRE 345KV (657791) CKT 1, near JAMESTOWN.			
217	FL1217	a. Apply fault at the JAMESTOWN 345KV bus.			
		b. Clear fault after 6 cycles by tripping the faulted line (CKT 1).			
219		3 phase fault on the JAMESTOWN 345KV (620369) to BUFFALO 345KV (620358) CKT 1, near JAMESTOWN.			
218	FLT218	a. Apply fault at the JAMESTOWN 345KV bus.			
		b. Clear fault after 6 cycles by tripping the faulted line (CKT 1).			
210	FLT219	3 phase fault on the BUFFALO 345KV (620358) to BISON 345KV (601067) CKT 1, near BUFFALO			
219		a. Apply fault at the BUFFALO 345KV bus.			
		b. Clear fault after 6 cycles by tripping the faulted line (CKT 1).			
	FLT220	3 phase fault on the ANTELOPE VALLEY 345KV (659420) to BROADLAND 345KV (659421) CKT 1, near ANTELOPE VALLEY			
220		a. Apply fault at the ANTELOPE VALLEY 345KV bus.			
		b. Clear fault after 6 cycles by tripping the faulted line (CKT 1).			
221	EI T221	Prior Outage of VALLEY CITY (652454) to JAMESTOWN (652445) 115kV.			
221	FL1221	3 phase fault on the FORMAN (652438) –LUDDEN (659172) 115kV line.			

39

		a. Prior outage VALLEY CITY (652454) to JAMESTOWN (652445) 115kV (solve network for steady state solution).
		b. 3 phase fault on the FORMAN (652438) –LUDDEN (659172) 115kV line near FORMAN 115kV.
		c. Leave fault on for 7 cycles, then trip the faulted line in (b).
		Prior Outage of VALLEY CITY (652454) to JAMESTOWN (652445) 115kV.
		3 phase fault on the FORMAN (652438) –ROBERTS CO. (655455) 115kV line.
222	FLT222	a. Prior outage VALLEY CITY (652454) to JAMESTOWN (652445) 115kV (solve network for steady state solution).
		b. 3 phase fault on the FORMAN (652438) –ROBERTS CO. (655455) 115kV line near FORMAN 115kV.
		c. Leave fault on for 7 cycles, then trip the faulted line in (b).
		Prior Outage of VALLEY CITY (652454) to ENDERLIN (652638) 115kV.
		3 phase fault on the JAMESTOWN (652445) – CARRINGTON (652428) 115kV line.
223	FLT223	a. Prior outage VALLEY CITY (652454) to ENDERLIN (652638) 115kV (solve network for steady state solution).
		b. 3 phase fault on the JAMESTOWN (652445) – CARRINGTON (652428) 115kV line near JAMESTOWN 115kV.
		c. Leave fault on for 7 cycles, then trip the faulted line in (b).
	FLT224	Prior Outage of VALLEY CITY (652454) to ENDERLIN (652638) 115kV.
		3 phase fault on the JAMESTOWN (652445) – CARRINGTON (652428) 115kV line.
224		a. Prior outage VALLEY CITY (652454) to ENDERLIN (652638) 115kV (solve network for steady state solution).
		b. 3 phase fault on the JAMESTOWN (652445) – EDGELEY (652432) 115kV line near JAMESTOWN 115kV.
		c. Leave fault on for 7 cycles, then trip the faulted line in (b).
	FLT225	VALLEY CITY 115kV Stuck Breaker
225		a. Apply single phase fault on the VALLEY CITY 115KV (652454) to ENDERLIN 115KV (652638) CKT 1, near VALLEY CITY.
		b. Wait 16 cycles, and then trip VALLEY CITY 115KV (652454) to ENDERLIN 115KV (652638) CKT 1 115kV line and remove fault.
	FLT226	VALLEY CITY 115kV Stuck Breaker
226		a. Apply single phase fault on the VALLEY CITY 115KV (652454) to JAMESTOWN 115KV (652445) CKT 1, near VALLEY CITY.
		b. Wait 16 cycles, and then trip VALLEY CITY 115KV (652454) to JAMESTOWN 115KV (652445) CKT 1 115kV line and remove fault.
227	FLT227	ENDERLIN 115kV Stuck Breaker

		a. Apply single phase fault at the ENDERLIN (652638) 115kV bus on the ENDERLIN (652638) – ELLIOTT (652462) 115kV line.
		b. Wait 16 cycles, and then trip ENDERLIN (652638) – ELLIOTT (652462) 115kV line
		c. Trip ENDERLIN (652638) to VALLEY CITY (652454) 115kV line and remove the fault.
		JAMESTOWN 115kV Stuck Breaker
228	FLT228	a. Apply single phase fault at the JAMESTOWN (652445) 115kV bus on the JAMESTOWN (652445) – CARINGTON (652428) 115kV line.
		b. Wait 16 cycles, and then trip JAMESTOWN (652445) – CARINGTON (652428) 115kV line.
		c. Trip JAMESTOWN (652445) to VALLEY CITY 115KV (652454) line and remove the fault.
		JAMESTOWN 115kV Stuck Breaker
	FLT229	a. Apply single phase fault at the JAMESTOWN (652445) 115kV bus on the JAMESTOWN (652445) – CARINGTON (652428) 115kV line.
229		b. Wait 16 cycles, and then trip JAMESTOWN (652445) – CARINGTON (652428) 115kV line.
		c. Trip JAMESTOWN (652445) to EDGELEY (652432) 115kV line and remove the fault.
		JAMESTOWN 230kV Stuck Breaker
	FLT230	a. Apply single phase fault at the JAMESTOWN (652444) 230kV bus on the JAMESTOWN (652444) – PICKERT (657759) 230kV line.
230		b. Wait 16 cycles, and then trip JAMESTOWN (652444) – PICKERT (657759) 230kV line.
		c. Trip JAMESTOWN (652444) to BISMARK (652426) 230kV line and remove the fault.
		JAMESTOWN 230kV Stuck Breaker
231	FLT231	a. Apply single phase fault at the JAMESTOWN (652444) 230kV bus on the JAMESTOWN (652444) – WEBER (661028) 230kV line.
		b. Wait 16 cycles, and then trip JAMESTOWN (652444) – WEBER (659128) 230kV line.
		c. Trip JAMESTOWN (652444) to BISMARK (652426) 230kV line and remove the fault.
		JAMESTOWN 230kV Stuck Breaker
	FLT232	a. Apply single phase fault at the JAMESTOWN (652444) 230kV bus on the JAMESTOWN (652444) – PICKERT (657759) 230kV line.
232		b. Wait 16 cycles, and then trip JAMESTOWN (652444) – PICKERT (657759) 230kV line.
		c. Trip JAMESTOWN (652444) 230kV to JAMESTOWN (652445) 115kV to JAMESTOWN (652208) 13.8kV transformer and remove the fault.
233	FLT233	JAMESTOWN 230kV Stuck Breaker

		 a. Apply single phase fault at the JAMESTOWN (652444) 230kV bus on the JAMESTOWN (652444) – WEBER (661028) 230kV line. b. Wait 16 cycles, and then trip JAMESTOWN (652444) – WEBER (659128) 230kV line. c. Trip JAMESTOWN (652444) 230kV to JAMESTOWN (652445) 115kV to JAMESTOWN (652208) 13.8kV transformer and remove the fault.
		JAMESTOWN 230kV Stuck Breaker
		a. Apply single phase fault at the JAMESTOWN (652444) 230kV bus on the JAMESTOWN (652444) – GARRISON (652441) 230kV line.
234	FLT234	 b. Wait 16 cycles, and then trip JAMESTOWN (652444) – GARRISON (652441) 230kV line. c. Trip JAMESTOWN (652444) to BISMARK (652426) 230kV line and remove the fault.
		JAMESTOWN 230kV Stuck Breaker
		a. Apply single phase fault at the JAMESTOWN (652444) 230kV bus on the JAMESTOWN (652444) – GARRISON (652441) 230kV line.
235	FLT235	b. Wait 16 cycles, and then trip JAMESTOWN (652444) – GARRISON (652441) 230kV line.
		c. Trip JAMESTOWN (652444) 230kV to JAMESTOWN (652445) 115kV to JAMESTOWN (652208) 13.8kV transformer and remove the fault.
		JAMESTOWN 345kV Stuck Breaker
		a. Apply single phase fault at the JAMESTOWN (620369) 345kV bus on the JAMESTOWN (620369) – CENTRE (657791) 345kV line.
236	FLT236	b. Wait 16 cycles, and then trip JAMESTOWN (620369) – CENTRE (657791) 345kV line.
		c. Trip JAMESTOWN (620369) 345kV to JAMESTOWN (620269) 115kV to JAMESTOWN (620169) 41.6kV transformer and remove the fault.
		JAMESTOWN 345kV Stuck Breaker
		a. Apply single phase fault at the JAMESTOWN (620369) 345kV bus on the JAMESTOWN (620369) – BUFFALO (620358) 345kV line.
237	FLT237	b. Wait 16 cycles, and then trip JAMESTOWN (620369) – BUFFALO (620358) 345kV line.
		c. Trip JAMESTOWN (620369) 345kV to JAMESTOWN (620269) 115kV to JAMESTOWN (620169) 41.6kV transformer and remove the fault.

Fault scenarios were first simulated using the post-project cases. After the contingencies were completed, the results were reviewed and evaluated against the criteria in section 3.3. If any contingency exhibited voltage instability, angular instability, or voltage deviation outside of stated criteria, the pre-project case was simulated for the respective contingency to compare the

results. Any new stability or angular issues attributed to the study project were flagged and reported.

3.4 Transient Stability Analysis Results

This section lists the results from the transient stability analysis.

3.4.1 Summer Shoulder (2021) Transient Stability Analysis

Stability results for the 2021 summer shoulder case showed no stability constraints for the disturbances simulated for this study (refer to Table 3-1 for a list and description of contingencies).

3.5 Transient Stability Analysis Conclusions

No transient stability constraints were identified for the addition of the thirteen SPP projects in the 2021 Summer Shoulder scenario. The post-project case showed similar performance as the respective pre-project case and did not affect the transient stability of the system.

SECTION 4: CONCLUSIONS

The report presents the results of the system impacts SPP's DISIS-2016-001 has on the MISO transmission system for 2021 Summer Peak and 2021 Summer Shoulder scenarios.

Thermal violations and voltage violations associated with the interconnection of the thirteen SPP projects were identified. Network upgrades were identified and cost allocation was performed. A summary of cost estimates identified for each scenario is provided in Table ES-2, detailed information regarding network upgrades is provided in section 2 of this report.

No transient stability constraints were identified for the addition of the thirteen SPP projects in the 2021 Summer Shoulder scenario. The post-project case showed similar performance as the respective pre-project case and did not affect the transient stability of the system.

The generators which have impacts on the MISO system will need to mitigate for the identified constraints prior to being granted full injection on the SPP system. If the generator would elect to proceed on a limited operation basis, then the impacting generator(s) will be subject to injection limits identified from MISO's Annual and Quarterly studies.

APPENDIX A: STEADY-STATE STUDY CONTINGENCIES

Con File	Con Type	Number of Contingencies
DPP-2016Feb-West Ph2 Outlet Contingency con	P1	66
DPP 2016Feb-West_Ph2 Master-P1-West-1 con	P1	10349
DPP 2016Feb-West_Ph2_Master-P1-Other-1 con	P1	5432
DPP 2016Feb-West Ph2 Master-P1-Other-2 con	P1	4560
P1 AMRN MTEP17-2022TA.con	P1	714
P1 CWLD MTEP17-2022TA.con	P1	19
P1 CWLP MTEP17-2022TA.con	P1	60
P1 PPI MTEP17-2022TA.con	P1	5
P1 SIPC MTEP17-2022TA.con	P1	22
ComEd_RTEP_Cat_P1.con	P1	467
P1_AECI_MTEP17-2022TA.con	P1	24
P1_CE_MTEP17-2022TA.con	P1	27
P1_WAPA_MTEP17-2022TA.con	P1	53
P1-4_AMRN_MTEP17-2022TA.con	P1	25
P1-4_CWLP_MTEP17-2022TA.con	P1	7
P1-4_SIPC_MTEP17-2022TA.con	P1	2
P1-4_WAPA_MTEP17-2022TA.con	P1	2
20170808_CHC-NLL_Eden2.con	P1	19
MEC-DPP2016FEB West Ph2 2022 Cat P1 09.15.2017.con	P1	148
P1_AMES_MTEP17-2022TA.con	P1	9
P1_ATC_MTEP17-2022TA.con	P1	1359
P1_BEPC_MTEP17-2022TA.con	P1	3
P1_CBPC_MTEP17-2022TA.con	P1	2
P1_CFU_MTEP17-2022TA.con	P1	10
P1_CIPCO_MTEP17-2022TA.con	P1	10
P1_DPC_MTEP17-2022TA.con	P1	119
P1_ITCM_MTEP17-2022TA.con	P1	421
P1_MDU_MTEP17-2022TA.con	P1	119
P1_MP_MTEP17-2022TA.con	P1	510
P1_MPC_MTEP17-2022TA.con	P1	34
P1_MPW_MTEP17-2022TA.con	P1	31
P1_XEL_MTEP17-2022TA.con	P1	1270
P1-4_ATC_MTEP17-2022TA.con	P1	166

Table A-1Steady-State Study Contingencies

P1-4_DPC_MTEP17-2022TA.con	P1	3
P1-4_GRE_MTEP17-2022TA.con	P1	31
P1-4_ITCM_MTEP17-2022TA.con	P1	23
P1-4_MDU_MTEP17-2022TA.con	P1	14
P1-4_MP_MTEP17-2022TA.con	P1	45
P1-4_MPC_MTEP17-2022TA.con	P1	7
P1-4_OTP_MTEP17-2022TA.con	P1	25
P1-4_SMMPA_MTEP17-2022TA.con	P1	2
P1-4_XEL_MTEP17-2022TA.con	P1	64
P2-P7_AMRN_MTEP17-2022TA1.con	P2-P7	1064
P2-P7_CWLD_MTEP17-2022TA.con	P2-P7	18
P2-P7_CWLP_MTEP17-2022TA.con	P2-P7	60
P2-P7_PPI_MTEP17-2022TA.con	P2-P7	5
P2-P7_SIPC_MTEP17-2022TA.con	P2-P7	2
ComEd_RTEP_Cat_P2-P7.con	P2-P7	1164
P2-P7_AECI_MTEP17-2022TA.con	P2-P7	15
P2-P7_CE_MTEP17-2022TA.con	P2-P7	79
P2-P7_WAPA_MTEP17-2022TA.con	P2-P7	17
MEC-DPP2016FEB West Ph2 2022 Cat P2 09.15.2017.con	P2	704
MEC-DPP2016FEB West Ph2 2022 Cat P5 09.15.2017.con	P5	98
MEC-DPP2016FEB West Ph2 2022 Cat P7 09.15.2017.con	P7	44
P2-P7_AMES_MTEP17-2022TA.con	P2-P7	10
P2-P7_ATC_MTEP17-2022TA.con	P2-P7	2166
P2-P7_BEPC_MTEP17-2022TA.con	P2-P7	4
P2-P7_CBPC_MTEP17-2022TA.con	P2-P7	11
P2-P7_CFU_MTEP17-2022TA.con	P2-P7	17
P2-P7_CIPCO_MTEP17-2022TA.con	P2-P7	52
P2-P7_DPC_MTEP17-2022TA.con	P2-P7	68
	121/	
P2-P7_GRE_MTEP17-2022TA.con	P2-P7	239
P2-P7_GRE_MTEP17-2022TA.con P2-P7_ITCM_MTEP17-2022TA.con	P2-P7 P2-P7	239 480
P2-P7_GRE_MTEP17-2022TA.con P2-P7_ITCM_MTEP17-2022TA.con P2-P7_MDU_MTEP17-2022TA.con	P2-P7 P2-P7 P2-P7	239 480 150
P2-P7_GRE_MTEP17-2022TA.con P2-P7_ITCM_MTEP17-2022TA.con P2-P7_MDU_MTEP17-2022TA.con P2-P7_MP_MTEP17-2022TA.CON	P2-P7 P2-P7 P2-P7 P2-P7 P2-P7	239 480 150 365
P2-P7_GRE_MTEP17-2022TA.con P2-P7_ITCM_MTEP17-2022TA.con P2-P7_MDU_MTEP17-2022TA.con P2-P7_MP_MTEP17-2022TA.CON P2-P7_MPC_MTEP17-2022TA.con	P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7	239 480 150 365 115
P2-P7_GRE_MTEP17-2022TA.con P2-P7_ITCM_MTEP17-2022TA.con P2-P7_MDU_MTEP17-2022TA.con P2-P7_MP_MTEP17-2022TA.CON P2-P7_MPC_MTEP17-2022TA.con P2-P7_MPW_MTEP17-2022TA.CON	P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7	239 480 150 365 115 210
P2-P7_GRE_MTEP17-2022TA.con P2-P7_ITCM_MTEP17-2022TA.con P2-P7_MDU_MTEP17-2022TA.con P2-P7_MP_MTEP17-2022TA.CON P2-P7_MPC_MTEP17-2022TA.con P2-P7_MPC_MTEP17-2022TA.con P2-P7_MPW_MTEP17-2022TA.con P2-P7_MPW_MTEP17-2022TA.con P2-P7_MPW_MTEP17-2022TA.con P2-P7_MPW_MTEP17-2022TA.con	P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7	239 480 150 365 115 210 40
P2-P7_GRE_MTEP17-2022TA.con P2-P7_ITCM_MTEP17-2022TA.con P2-P7_MDU_MTEP17-2022TA.con P2-P7_MP_MTEP17-2022TA.CON P2-P7_MPC_MTEP17-2022TA.con P2-P7_MPK_MTEP17-2022TA.con P2-P7_MPK_MTEP17-2022TA.CON P2-P7_MPK_MTEP17-2022TA.CON P2-P7_MPK_MTEP17-2022TA.CON P2-P7_MRES_MTEP17-2022TA.CON P2-P7_OTP_MTEP17-2022TA.CON	P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7 P2-P7	239 480 150 365 115 210 40 222
P2-P7_GRE_MTEP17-2022TA.con P2-P7_ITCM_MTEP17-2022TA.con P2-P7_MDU_MTEP17-2022TA.con P2-P7_MP_MTEP17-2022TA.CON P2-P7_MPC_MTEP17-2022TA.con P2-P7_MPW_MTEP17-2022TA.CON P2-P7_MPW_MTEP17-2022TA.CON P2-P7_MPW_MTEP17-2022TA.CON P2-P7_MRES_MTEP17-2022TA.CON P2-P7_MRES_MTEP17-2022TA.CON P2-P7_MRES_MTEP17-2022TA.CON P2-P7_OTP_MTEP17-2022TA.con P2-P7_RPU_MTEP17-2022TA.con	P2-P7 P2-P7	239 480 150 365 115 210 40 222 30

P2-P7_XEL_MTEP17-2022TA.con	P2-P7	1319
-----------------------------	-------	------

APPENDIX B: STUDY PROJECT ONE-LINE DIAGRAMS

CEII INFORMATION REDACTED

APPENDIX C: STUDY PROJECT DYNAMIC DATA

CEII INFORMATION REDACTED

APPENDIX D: TRANSIENT STABILITY ANALYSIS PLOTS

Refer to separate document for plots of the contingencies performed for 2021 Summer Shoulder scenarios.